
DEPARTMENT OF MATHEMATICS
TECHNISCHE UNIVERSITÄT MÜNCHEN

Master’s Thesis in Mathematics

Toward Optimising a Retrieval Augmented
Generation Pipeline using Large Language

Model

Gentrit Fazlija

DEPARTMENT OF MATHEMATICS
TECHNISCHE UNIVERSITÄT MÜNCHEN

Master’s Thesis in Mathematics

Toward Optimising a Retrieval Augmented
Generation Pipeline using Large Language

Model

Optimierung einer Retrieval Augmented
Generation Pipeline unter Verwendung eines

großen Sprachmodells

Author: Gentrit Fazlija
Supervisor: Prof. Dr. Florian Matthes
Advisor: Anum Afzal
Submission Date: 15.03.2024

I confirm that this master’s thesis in mathematics is my own work and I have documented all
sources and material used.

Munich, 15.03.2024 Gentrit Fazlija

Mobile User

Abstract

This thesis introduces a Modular Retrieval Augmented Generation (RAG) framework, a re-
sponse to the growing trend where over 60% of companies integrate RAG into their operations.
Focusing on the incorporation of four specific modules—Multi-Query, Child-Parent-Retriever,
Ensemble Retriever, and In-Context-Learning—the study aims to enhance the functionality
and performance of RAG systems for academic data retrieval, specifically targeting over 150
study programs at Technical Universität München. A significant contribution of this research
is the introduction of a novel evaluation approach, the RAG Confusion Matrix, designed to
assess the effectiveness of various module combinations within the Modular RAG framework.
By exploring the integration of both open-source (e.g., Llama 2, Mistral, Mini Orca, Vicuna)
and closed-source (GPT-3.5 and GPT-4) Large Language Models, this thesis seeks to identify
optimal configurations that improve query interpretation, data retrieval accuracy, and context-
based response adaptation, offering valuable insights into the application and optimization of
RAG frameworks in educational and business contexts.

iii

Contents

Abstract iii

1. Introduction 1

2. Related Work 2

3. Background 5
3.1. Large Language Models . 5

3.1.1. Embedding . 6
3.2. Retrieval Augmented Generation . 7

3.2.1. Naive RAG . 8
3.2.2. Advanced RAG . 9
3.2.3. Modular RAG . 12

3.3. Evaluation . 19
3.3.1. RAG Evaluation . 20

4. Corpora 23
4.1. TUM Studyprogram Corpora . 23

4.1.1. Official TUM website . 25
4.1.2. Individual Faculty website . 26

4.2. Question-Answer Set . 27
4.3. Evaluation Set . 28

5. Methodology 31
5.1. Models . 31

5.1.1. Open-Sourced Models . 32
5.1.2. Closed-Sourced Models . 33

5.2. Pre-Retrieval Phase . 34
5.2.1. Multi Query . 35

5.3. Retrieval Phase . 36
5.3.1. Child Parent Retriever . 37
5.3.2. Ensemble Retriever . 37

5.4. Generation Phase . 39
5.4.1. In-Context-Learning . 39
5.4.2. Parsing Meta-Data . 40

5.5. User Interface . 43

iv

Contents

5.6. Evaluation . 43
5.6.1. RAG Confusion Matrix . 43

6. Evaluation Results 47
6.1. Retrieval Quality . 47

6.1.1. Hit Rate . 48
6.2. Generation Quality . 51

6.2.1. RAG Confusion Matrix . 52
6.2.2. RAG AVG-Metric Evaluation . 57

6.3. RAG Framework Enhancement . 61
6.3.1. RAG Confusion Matrix . 64
6.3.2. RAG AVG-Metric Evaluation . 66

7. Conclusion and Future Work 68

A. Appendix: Evaluation Metrics for Generation Quality 70

List of Tables 72

Bibliography 73

v

1. Introduction

Since the 1950s, with the introduction of n-grams, scientists have been attempting to create
Language Models capable of interacting with humans using natural language. A significant
breakthrough came in 2017 with the publication of "Attention is All You Need," which
introduced the Transformer architecture, laying the groundwork for the development of
Large Language Models (LLMs). These models have demonstrated exceptional capabilities in
generating human-like text, understanding language, and translating between languages.

Businesses quickly took notice, eager to harness the power of LLMs for their operations.
However, the use of LLMs in a business context is not straightforward, as these models
are predominantly trained on publicly available data, making them less suited for specific
business needs. This challenge led to the emergence of Retrieval Augmented Generation
(RAG) frameworks, which offer a solution by enabling the integration of company-specific
data with the expansive knowledge base of LLMs, thereby enhancing their utility and
relevance in business applications. A recent study by Databricks underscores the growing
reliance on RAG frameworks, revealing that approximately 60% of such applications employ
some form of RAG to enhance performance and relevance. [1]

In this thesis, we aim to construct a RAG framework equipped with a user interface
to enable efficient interaction with data depicting over 150 study programs at Technical
Universität München, catering to both existing and potential students. This framework
integrates several modules, each contributing uniquely to the functionality and performance
of the RAG system, which will be assessed using a newly developed RAG Confusion Matrix.

The background section introduces Naive RAG—a basic version without extra data han-
dling—and explains the roles of modules in our Modular RAG framework. We incorporate
Multi-Query for improved query interpretation, Child-Parent-Retriever for better hierarchical
data retrieval, Ensemble Retriever for combining BM25 and dense retrievers, and In-Context-
Learning for context-based response adaptation. Additionally, our development uses various
LLMs, including open-source models Llama 2 7B, Llama 2 13B, Mistral 7B, Mini Orca 7B, and
Vicuna 7B, and closed-source models GPT 3.5 and GPT 4.

The methodology section of the thesis outlines the strategic decisions made throughout
the framework’s development, detailing the selection and integration of the various modules.
The evaluation chapter presents an analysis of the framework’s performance, focusing on
how different combinations of modules and iterations of LLMs influence the effectiveness of
the RAG system. Through this comprehensive approach, the thesis aims to identify the most
efficient configurations, thereby contributing valuable insights into the application of RAG
frameworks in enhancing information retrieval and generation.

1

2. Related Work

Early approaches to RAG involved relatively simple methods of retrieving relevant documents
based on the query and then processing these documents to generate a response. However,
recent advancements have seen more sophisticated integration of retrieval and generation
processes. Notable implementations of RAG, such as those by Lewis et al., have demonstrated
the ability to dynamically retrieve and incorporate relevant information during the generation
process, thereby significantly enhancing the quality and relevance of the generated text.
These advancements have been facilitated by improvements in both the retrieval mechanisms,
which have become more efficient and effective at finding relevant information, and the
generative models, which have become better at integrating and contextualizing the retrieved
information.

Beyond question answering, RAG is also used in content creation tasks, including article
writing, code generation, and creative storytelling and many more. By accessing a diverse
range of sources, RAG models can generate content that is not only relevant and informative
but also rich in detail and variety. For instance, in content creation, RAG can draw upon
various articles, blogs, and databases to produce comprehensive and nuanced articles on
topics ranging from environmental science to geopolitical analyses. [2, 3]

Over the last months, notable RAG examples have emerged. Some of which are Google’s
RETRO (Retrieval-Enhanced Transformer), Forward-Looking Active Retrieval Augmented
Generation (FLARE), and System 2 Attention (S2A). Google’s RETRO represents an ad-
vancement in leveraging external knowledge bases by integrating a retrieval component into
the Transformer architecture. This enables the model to dynamically incorporate relevant
information from a vast corpus during the generation process, resulting in more accurate
and information-rich text generation across various tasks, ranging from complex question
answering to content creation with nuanced context. [4]

FLARE, on the other hand, harnesses the internet as a dynamic knowledge base to ensure
the accuracy and timeliness of responses. Through an iterative process, FLARE uses the initial
response from the LLM to query internet searches, integrating fresh information into the
answer. This approach underscores the importance of accessing real-time data to enhance
LLM outputs, particularly for questions requiring up-to-date information. [5] Similarly, S2A,
developed by META, focuses on refining the context within RAG systems by regenerating it
to remove irrelevant details while retaining essential information. By instructing the LLM to
reconstruct its context, S2A ensures that only pertinent elements are considered, marking a
significant step towards improving the relevance and clarity of responses generated by RAG
systems. [6]

Multiple Multimodal RAG frameworks utilize CLIP embeddings to integrate text and image
data, enabling the retrieval of relevant multimodal contexts. This framework synthesizes

2

2. Related Work

responses using a multimodal model, demonstrating the benefits of combining textual
and visual information. The incorporation of both data types showcases the potential for
multimodal approaches to enrich and enhance the accuracy of RAG-generated responses.

Considering the diversity of RAG pipelines, a clear insight emerges: a RAG framework
is inherently a synthesis of various components, collaboratively functioning to achieve a
singular objective. Consequently, altering even a minor detail within any component of the
RAG framework can result in significant modifications to the entire system. Thus, a critical
aspect of research in this area involves discerning the specific impact each component has on
the overall framework. This analysis will be a focal point throughout this thesis.

The evaluation of RAG systems necessitates a comprehensive approach that transcends
conventional language model evaluation metrics, incorporating both automated metrics and
human assessment to capture the nuanced performance of these hybrid models. Automated
metrics such as BLEU, ROUGE, and F1 scores serve to quantitatively assess aspects like fluency,
coherence, and the accuracy of generated text against reference standards. However, these
metrics, while useful for scalability and initial benchmarking, often fall short in capturing
the full complexity of tasks RAG systems are deployed for, particularly in evaluating the
relevance and integration of retrieved information within the generated content. Given that
LLMs like ChatGPT achieve superior performance across these metrics, their effectiveness
raises questions about the utility of traditional scores, suggesting that they may no longer be
as indicative of true performance in the nuanced contexts RAG systems are designed for.

In the evaluation of RAG systems, our focus narrows down to two critical aspects: retrieval
metrics and evaluation metrics. Retrieval metrics, including Hit Rate, Mean Average Precision
(MAP), and Mean Reciprocal Rank (MRR), provide quantitative measures of a system’s ability
to retrieve relevant documents. Evaluation metrics, on the other hand, can involve human
judgment or the comparison of outputs from different models, often using a larger model to
assess the output of a smaller one. [7]

Hit Rate measures the proportion of queries for which the correct answer is retrieved within
the top-k results, serving as an indicator of the system’s effectiveness in identifying relevant
answers quickly. Mean Reciprocal Rank (MRR) offers insight into the average rank position of
the first relevant document across queries, with a higher MRR reflecting better performance
in surfacing relevant documents at the top of the retrieval list. Mean Average Precision
(MAP) extends this by evaluating the precision of retrieval across all ranks, emphasizing the
importance of the order in which relevant documents appear, with higher values indicating
better performance in ranking relevant documents more highly.

The distinction between retrieval and evaluation metrics is crucial for assessing RAG
systems comprehensively. Retrieval metrics (Hit Rate, MRR, MAP) focus on the system’s
ability to find and rank relevant information accurately, assessing effectiveness and precision in
document retrieval. Conversely, evaluation metrics provide a broader perspective, leveraging
human judgment or comparisons with larger models to gauge the quality of generated
responses. This dual approach ensures a balanced evaluation of a RAG system’s retrieval
efficiency and the relevance and accuracy of its outputs.

The Technical University of Munich has recently undertaken a project to develop a chat-

3

2. Related Work

bot designed to address student inquiries effectively. Launched during the "TUM MGT @
Microsoft" hackathon in December 2023, this initiative brought together student teams to
create a RAG chatbot. This development aims to streamline the management of the estimated
600 weekly emails received by the TUM School of Management’s Student Support, thereby
enhancing efficiency and providing timely responses to students. The successful implemen-
tation of this chatbot signifies TUM’s commitment to leveraging artificial intelligence for
improving administrative processes and student support services. The author’s participation
in this project underscores its relevance and contribution to the exploration of AI applications
in educational contexts. [8]

4

3. Background

3.1. Large Language Models

The evolution of Large Language Models (LLMs) represents a significant trajectory in the
field of artificial intelligence, tracing back to the early 2000s with the introduction of neural
probabilistic language models. [9] These foundational models, which utilized neural networks
to predict the next word in a sequence, set the stage for the development of more complex
systems. Key milestones in this journey include the introduction of sequence-to-sequence
(seq2seq) models [10] which revolutionized machine translation by encoding a source sentence
and decoding it into a target language, and the advent of attention mechanisms that allowed
models to focus on relevant parts of the input sequence for better context understanding.

Key milestones in LLM research have significantly shaped the landscape of artificial
intelligence and natural language processing. The introduction of the Transformer architecture
by Vaswani et al. in 2017 marked a pivotal breakthrough, introducing a model based solely
on attention mechanisms, eliminating the need for recurrent layers. This innovation not only
improved the efficiency and effectiveness of language models but also paved the way for
subsequent advancements. The development of BERT (Bidirectional Encoder Representations
from Transformers) by Devlin et al. further exemplified the power of pre-training, enabling
models to understand context from both left and right of a word, a notable departure from
previous models that processed text in a unidirectional manner. These innovations have
significantly improved models’ understanding of language nuances and context, setting new
standards for performance across various language tasks.

Following these foundational advancements, the GPT series by OpenAI took the spotlight,
showcasing the potential of scaling up Transformer models. GPT-3, with its 175 billion
parameters, pushed the boundaries of language models’ capabilities, demonstrating an ability
to perform a wide range of tasks without task-specific training. This leap in model size and
capability highlighted the scalability of Transformer architectures and their impact on the
field’s understanding of model capacity, generalization, and task adaptability. The progression
from GPT-1 to GPT-3 reflects a broader trend in LLM research towards larger, more powerful
models capable of increasingly sophisticated language understanding and generation, a trend
that continues to drive innovation in AI research and application.

Regarding LLMs, it’s widely acknowledged that larger and more complex models are
perceived as more capable. An important advancement in optimizing the transformer
architecture is the implementation of a technique known as a Mixture of Experts (MoE),
which essentially allows the model to dynamically select from a pool of specialized sub-
models (the "experts") for processing different parts of the input data. This optimization
enables more efficient computation and potentially greater scalability by leveraging the

5

3. Background

strengths of individual experts for specific tasks or data types, thereby enhancing the overall
performance and flexibility of LLMs.

Additionally, a distinction can be made between Closed-Sourced and Open-Sourced models,
with the Llama series standing out as a prominent example of open-source LLMs that have
achieved remarkable results and serve as foundational components for other open LLMs.
The key difference lies in the accessibility of the models’ weights; open-source models allow
for the inspection and local or cloud-based fine-tuning of their weights. This approach only
incurs the cost of electricity, offering transparency in data flow. This distinction will be crucial,
as both Open-Sourced and Closed-Sourced models will be employed in the methodology
chapter of this thesis.

3.1.1. Embedding

In the intricate process of training LLM from the ground up, embedding spaces serve
a critical function. Initially, the model’s architecture is designed such that its weights
encapsulate the rich tapestry of linguistic and contextual nuances. Specifically, within the
transformer architecture, the embedding step transforms sentences into vector representations,
facilitating the model’s understanding and manipulation of language. This mechanism is
particularly vital in the context of RAG frameworks, where embedding spaces assume a
unique and enhanced role. Unlike general LLM operations, a RAG framework incorporates a
bespoke embedding space, often termed a vector store, pre-populated with domain-specific
data in vectorized form. This vector store is integral during the retrieval step of the RAG
process, where it enables the precise selection of vectors that encapsulate relevant contextual
information. These selected vectors are then utilized in the generation part of the framework,
guiding the LLM to produce responses that are not only pertinent but also richly informed
by the domain-specific context previously retrieved. This delineation between the retrieval
and generation phases underscores the efficiency and specificity that embedding spaces bring
to the RAG framework, ensuring that the generated content is both relevant and contextually
nuanced.

Embeddings are a foundational technique in natural language processing (NLP) that convert
words, phrases, or even entire documents into numerical vectors of a fixed dimensionality,
allowing machines to process and understand language. By representing textual elements in
a high-dimensional space, these embeddings enable various applications, notably in search
functionalities, where the semantic similarity between the query and potential results is
often measured using cosine similarity among their vector representations. Although cosine
similarity is a prevalent metric due to its effectiveness in identifying angular proximity
between vectors, other distance metrics can also be employed depending on the specific
requirements of the task. The dimensionality of these embedding spaces varies, with common
sizes being 768 or 1536 dimensions. This variation in dimensions reflects a balance between
capturing enough semantic detail and computational efficiency.

The creation of embeddings involves mapping words or phrases to vectors in such a way
that the semantic relationship between words is reflected in the geometric arrangement of
their vectors. A typical method involves using an "anchor" word and comparing it with other

6

3. Background

words that are either similar or dissimilar, leading to a process known as contrastive learning.
During this process, the model is trained to bring the vectors of similar words closer together
and push those of dissimilar words further apart in the embedding space. This training can
be accomplished through various algorithms, including neural network models that adjust
the vector representations based on the context in which words appear, thereby encapsulating
both the syntactic and semantic nuances of language use. Through iterative adjustments
during the training phase, the model learns to accurately embed words in a way that mirrors
their real-world usage and relationships. [11]

3.2. Retrieval Augmented Generation

RAG combines the generative capabilities of LLMs with information retrieval techniques to
enhance the model’s ability to generate responses based on a wider range of knowledge than
what is contained in its parameters alone. This approach significantly improves the model’s
performance on tasks requiring specific factual information or domain-specific knowledge,
marking a pivotal development in the field of artificial intelligence and natural language
processing. The significance of RAG lies in its hybrid nature, leveraging both the depth of
pre-trained models for language understanding and generation, and the breadth of external
databases or documents to pull in precise information. The pre-trained model acts as a
foundation, utilizing its understanding of basic semantic structuring and patterns to grasp
the context of queries. Meanwhile, the external data, when provided as context to the LLM,
serves as the ground truth, enabling the generation of answers that are not only contextually
appropriate but also factually accurate, particularly in question-answering scenarios. This
dual approach allows RAG systems to deliver highly relevant and accurate information
by combining the LLM’s broad linguistic capabilities with the specific, detailed knowledge
contained within external data sources.

The conceptual framework of a RAG system can be effectively visualized as being par-
titioned into three distinct parts: Ingestion, Retrieval, and Generation. Each of these com-
ponents plays a pivotal role in the overall functioning of the RAG pipeline, and they can
each be engineered with varying degrees of complexity. The Ingestion part is responsible
for assimilating and processing the initial input data, preparing it for subsequent retrieval.
The Retrieval part then takes over, utilizing the processed data to fetch the most relevant
information from a vast repository of knowledge. Finally, the Generation part synthesizes the
retrieved information to produce coherent and contextually relevant responses. Moreover,
the RAG framework includes specific connection blocks that facilitate seamless interaction
between these components, such as linking the Ingestion part with the Retrieval part, ensuring
a fluid and efficient flow of information throughout the system.

In the subsequent chapters, this thesis will explore both a naive, or simple, RAG approach
and an advanced RAG approach, highlighting the variability and adaptability of the RAG
framework to different levels of complexity and sophistication. By the end of this chapter, it
will become evident that the components of a RAG system are inherently modular, allowing
for the addition or discarding of parts as required. This modularity is a critical feature that

7

3. Background

will be leveraged in the methodology chapter, where different modules are connected, and
their combined output is evaluated. This exploration underscores the flexibility of the RAG
architecture, illustrating how it can be customized to meet specific requirements or objectives,
thereby enhancing the system’s effectiveness and applicability across a range of tasks and
settings.

3.2.1. Naive RAG

In the realm of building a simple RAG, the concept of a naive RAG represents an elementary
yet foundational approach, gaining traction shortly after the widespread adoption of tech-
nologies like ChatGPT. Characterized by its straightforward "Retrieve-Read" framework, the
naive RAG delineates a basic structure comprising ingestion, retrieval, and generation phases,
providing a scaffold for more complex RAG implementations. [12]

The first phase, known as digestion within the context of naive RAG, plays a pivotal role in
the preparation of data for subsequent retrieval and generation tasks. This process unfolds
offline and encompasses several key stages aimed at standardizing and optimizing the data
for efficient processing. Initially, the digestion phase involves the cleaning and extraction of
data from diverse formats, including PDF, HTML, Word, and Markdown, converting them
into a uniform plain text format. To accommodate the context limitations inherent in language
models, this text is further segmented into smaller, manageable chunks, a process referred to
as chunking. These chunks are then encoded into vector representations using an embedding
model. This transformation is crucial for enabling similarity comparisons during the retrieval
stage. Completing the digestion process, a vector store is constructed to store these text
chunks and their corresponding vector embeddings as key-value pairs, thereby laying the
groundwork for a scalable and efficient search capability essential for the retrieval phase.

Upon receiving a user query, the naive RAG system leverages the encoding model pre-
viously used during the digestion phase to convert the input into a comparable vector
representation. This step is critical for aligning the query with the pre-processed data struc-
ture of the RAG system. The system then calculates similarity scores between the query
vector and the vectorized chunks stored in the indexed corpus, identifying the top K chunks
that exhibit the highest similarity to the query. These selected chunks are not just retrieved;
they are expanded upon to serve as a contextual foundation for formulating a response to the
user’s request.

Following the retrieval of these topically relevant chunks, the naive RAG system embarks
on the generation phase. Here, the original query and the retrieved documents are amal-
gamated into a unified prompt, setting the stage for a large language model to craft an
appropriate response. The model’s response strategy may vary, influenced by task-specific
requirements. Furthermore, in scenarios involving ongoing dialogues, the system has the
capability to incorporate any existing conversational history into the prompt. This allows for
a seamless continuation of multi-turn dialogue interactions, ensuring that responses are not
only contextually accurate but also coherent within the broader scope of the conversation.

The naive RAG implementation, despite its innovative approach to blending retrieval and
generation processes, grapples with considerable challenges across "Retrieval," "Generation,"

8

3. Background

and "Augmentation" facets. In retrieval, issues like low precision may result in the selection of
misaligned chunks, diminishing retrieval quality and potentially leading to hallucinations or
narrative discontinuity. Compounded by low recall, the system might not gather all important
information, restricting the LLM’s capacity for generating detailed and accurate responses.
During generation, the model faces hurdles in maintaining output relevance and coherence,
with risks of producing content that is irrelevant, toxic, or biased due to the model’s limitations
in content refinement. The augmentation phase, crucial for weaving retrieved context into
the generation task, also presents challenges, especially when navigating redundancy in
similar passages, which risks producing repetitive and bloated content. Achieving a seamless
integration of diverse passages and aligning writing styles and tones for consistent output
further complicates the generation process, underscoring the complexity of creating engaging
and coherent responses within the naive RAG framework.

3.2.2. Advanced RAG

The Advanced RAG framework represents a significant evolution from its Naive counterpart,
designed to specifically address and rectify the limitations identified in the earlier model
and more. However, up to this date, there is no specific configuration of RAG modules
that universally defines what constitutes an Advanced RAG framework. Various sources
highlight improvements over the shortcomings of the naive RAG approach by enhancing
different segments of the RAG pipeline at specific junctures. Yet, since these enhancements
are often incremental and scattered across different aspects of the framework, it’s challenging
to pinpoint a singular permutation of modules within the RAG architecture that could
be distinctly recognized as an Advanced RAG. These modifications, while individually
contributing to the overall efficacy and sophistication of RAG systems, do not coalesce into a
standardized advancement that can be uniformly labeled as ’Advanced RAG.’ This situation
underscores the dynamic and evolving nature of RAG development, where continuous,
iterative improvements are made in pursuit of optimizing performance and relevance, rather
than achieving a definitive, one-size-fits-all enhancement model.

Given the diversity of data structures, domains, and levels of complexity encountered
in various applications, the integration and implementation of different RAG frameworks
become essential. This diversity necessitates a flexible approach to the design and evaluation
of RAG systems, allowing them to adapt and perform optimally across varied contexts. Such
an approach involves a top-down conceptualization of the RAG framework as comprising
interconnected building blocks — Digestion, Retrieval, and Generation. The implementation
of specific modules within these phases is crucial for tailoring the framework to the unique
demands of different data landscapes, thereby ensuring a smooth flow of information and
effective processing across the entirety of the RAG system.

In this section, we will embark on a top-level overview, exploring the potential enhance-
ments to the Naive RAG framework. This exploration aims to identify areas of improvement
that can further refine and elevate the system’s capabilities. Subsequently, in the next chapter
"Modular RAG," we delve deeper into the granular details of the specific modules comprising
the building blocks of the RAG architecture.

9

3. Background

At the heart of these enhancements is the digestion process, focusing primarily on optimiz-
ing data indexing to improve the content’s quality before it even enters the retrieval phase.
This optimization encompasses several strategies: enhancing data granularity, optimizing
digestion structures, adding metadata, alignment optimization, and mixed retrieval methods
to name a few. Enhancing data granularity ensures the text is standardized, consistent,
factually accurate, and context-rich, which involves removing irrelevant data, clarifying
ambiguities, and updating outdated documents. Optimizing digestion structures entails
adjusting chunk sizes to better capture relevant contexts and leveraging graph structures to
exploit relationships between data nodes, thereby enriching the context available for retrieval.
The addition of metadata to chunks enhances filtering capabilities and retrieval efficiency by
providing additional contextual clues.

When looking at the connection between the digestion and retrieval stage we see signif-
icant enhancements through the implementation of dynamic and fine-tuned embeddings,
each aimed at refining the system’s ability to identify and utilize the most relevant context.
Dynamic embeddings represent a pivotal improvement, offering sensitivity to the contextual
nuances of language by adjusting the vector representation of words based on their surround-
ing context. This approach allows for a richer, more precise understanding of queries, as
the meaning of words can shift dramatically depending on their use, thus ensuring that the
retrieval process is informed by the nuanced meanings words acquire in different settings.
Following this, fine-tuning embeddings emerges as a crucial strategy for tailoring the retrieval
process to specific domain needs. By customizing embedding models, the system can signif-
icantly enhance the relevance of retrieved content, particularly in specialized fields where
terms may evolve rapidly or be uncommon. This process involves adjusting the embeddings
based on domain-specific data, ensuring that the system can effectively handle a wide range
of queries with high precision, even in the face of challenging, dynamic vocabularies.

Within the Advanced RAG framework, the retrieval process encounters notable improve-
ments, particularly addressing two main challenges inherent in traditional approaches. Firstly,
the reliance on dot or cosine similarity for matching query vectors with ingested document
vectors in the multi-dimensional space underpins a significant limitation. This method presup-
poses a semantic similarity between the question and the potential answers, an assumption
that does not always hold true. Various factors can disrupt this presumed similarity: the
contextual knowledge required to understand the query may be distributed across multiple
vectors, necessitating their combination for a complete answer; or simply, the semantic rela-
tionship between the question and its answer may not be direct, making it challenging for the
cosine similarity approach to accurately retrieve the most relevant documents. Additionally,
innovative retrieval mechanisms, such as the ColBERT model, explore beyond simple dot
or cosine similarity by introducing a late interaction architecture. This approach allows for
the independent encoding of queries and documents, followed by a cost-effective interaction
step to model fine-grained similarity, demonstrating the potential for more efficient and
nuanced retrieval strategies that capitalize on the expressiveness of deep language models
while significantly reducing computational demands. [13]

The second challenge concerns the creation of vector representations during the inges-

10

3. Background

tion phase. This process involves a delicate balance between the breadth of information
encapsulated within a single vector and the precision of the information it represents. When
a vector is tasked with representing a vast array of information, there’s a risk of diluting
its relevance with noise, making it less effective for precise retrieval. Conversely, vectors
representing too narrow a scope of information may lack the necessary contextual breadth,
failing to capture nuanced relationships or broader contextual cues essential for accurate
retrieval. These shortcomings highlight the complexity of optimizing the retrieval process
within the RAG framework, underscoring the need for advanced strategies that can navigate
the intricacies of semantic similarity and vector representation to enhance the accuracy and
relevance of retrieved content.

Upon retrieving contextually relevant information from the database, integrating this data
with the user query into LLMs poses significant challenges, not just due to context window
limitations, but also concerning the effective use of long contexts. Even if it were possible
to bypass these limitations and input all retrieved documents directly into the LLM, two
main issues remain closely intertwined. Firstly, the inclusion of a large volume of retrieved
information risks introducing substantial noise alongside the relevant data. Without proper
compression or summarization, this noise can significantly hinder the model’s ability to
identify and focus on the crucial information needed for generating accurate responses.
Secondly, as highlighted by recent research, language models exhibit limitations in effectively
utilizing long input contexts. Performance notably deteriorates when the position of relevant
information shifts within the input, particularly for information located in the middle of long
contexts. This phenomenon suggests that, despite their capacity to process extensive contexts,
current language models do not robustly leverage the entirety of their input, showing a
preference for information presented at the beginning or end.

During the generation phase of integrating contextually relevant information into LLMs,
significant challenges arise, notably in generating concise and accurate responses to user
queries. Two primary issues are prevalent in this phase. The first is the occurrence of
hallucination when the model fails to retrieve the desired chunks of information, leading
to the generation of content not grounded in the retrieved data or significantly divergent
from the provided context. This issue is fundamentally different from instances where the
model provides inaccurate or incorrect responses due to misinterpretation or misuse of correct
information within the context window, highlighting a discrepancy in the model’s processing
rather than an absence of relevant data. This nuance will be further addressed inside tha
chapter RAG Evaluation.

The second challenge is ensuring the consistency and satisfaction of the model’s responses.
Addressing this requires an effective strategy like in-context learning, which involves furnish-
ing the model with examples of the expected output or behavior directly within the input.
This approach not only "shows" the LLM the anticipated quality and relevance of responses
but also aids in mitigating issues of hallucination and inconsistency. By demonstrating desired
outputs, in-context learning becomes a crucial mechanism for harmonizing the generation
capabilities of LLMs with the nuanced requirements of specific tasks, thereby enhancing the
overall success and reliability of the model’s output.

11

3. Background

3.2.3. Modular RAG

In the preceding chapter on Advanced RAG, it has become evident that the landscape of
RAG is rich with potential for enhancement through various building blocks. This realization
stems from the dynamic nature of engineering solutions within the field, which continue to
evolve and materialize at a rapid pace. Acknowledging the complexity and the multifaceted
components of RAG systems, the research community has gravitated towards a modular
approach. This approach entails the assembly, activation, and optimization of distinct
modules, each contributing to the overall efficacy of the RAG framework. Such decisions
surrounding module integration are informed by a multitude of factors, including inference
time, budget constraints, domain specificity, information structure, target audience, and
potential integrations with other technological tools.

As discussed in the Advanced RAG chapter, enhancing a RAG system can be approached
through two primary avenues: the integration of new modular building blocks and the
fine-tuning of existing embedding, retrieval, or generation models. The former focuses on
the structural aspect of RAG systems, introducing modular components that can be tailored
or replaced to improve performance. The latter, meanwhile, delves into fine-tuning of the
models themselves to better align with the specific needs of the task at hand. For the purpose
of this paper, our discussion will primarily center on the concept of modular RAG in the
context of a "frozen" RAG scenario.

Multi Query

Query Search Relevant
Docs

Child-Parent
Retriever

In-Context
Learning LLM

RAG Framework

Module Iteration:
 Multi-Query &

 Child-Parent-Retriever &
 In-Context Learning

Figure 3.1.: RAG Framework of a certain Module Iteration

12

3. Background

In the paragraphs that follow, we will explore various modules that can be integrated
into the RAG framework, with a particular focus on those that align with the mentioned
identified for specific factors. This examination will be presented in a sequence that mirrors
the typical utilization of these modules within the RAG framework. However, it is important
to emphasize that the application of these modules is not restricted to a single phase of the
RAG process. For example, while we begin by discussing modules predominantly associated
with the Digestion phase, it is feasible for some modules to be applied in subsequent stages
of the RAG framework. The decision to employ modules at different stages requires careful
consideration and evaluation to ensure that they contribute positively to the overall objectives
of the RAG system. One such RAG framework is depictet in figure 3.1.

When integrating modules into the RAG framework, maintaining a coherent flow of
information is paramount. It is essential to understand how different modules interact with
one another. Some modules, when combined, may produce a synergistic effect, enhancing
the overall performance of the RAG system beyond what would be achieved through their
independent operation. Conversely, other modules may function independently, without
direct interactions or dependencies on other components of the system. This diversity in
module interplay necessitates a thoughtful approach to integration, ensuring that each module
serves its intended purpose without disrupting the cohesive operation of the RAG framework.

3.2.3.1. Digestion Phase

• Recursive Chunking Recursive Chunking is an advanced method that blends straight-
forward Character Chunking with the strategic use of special inputs such as enters,
periods, and other punctuation marks to segment text. This technique operates under
the premise that semantically similar content is typically contained within a single para-
graph, aiming to preserve the integrity of this content through the chunking process.
The approach is dynamic; for paragraphs exceeding a predefined character limit, the
text is divided into at least two chunks to accommodate its length. Conversely, if a
paragraph falls below this limit, it is selected in its entirety. The critical challenge in
Recursive Chunking lies in setting an appropriate character limit that aligns with the
dataset’s structure and content. This limit is crucial for achieving a balance between
maintaining semantic coherence within chunks and ensuring they are of a manageable
size for subsequent processing stages.

• Semantic Chunking Semantic Chunking diverges from traditional methods by leveraging
embeddings to understand and group texts based on semantic similarity, rather than
imposing a uniform chunk size. This approach, utilizing strategies like hierarchical
clustering with positional rewards and detecting breakpoints between sentences, aims
to preserve semantic cohesion by ensuring semantically related information stays
together. However, this method’s iterative process of comparing chunk pairs for semantic
similarity, requiring LLM inference steps per pair, makes it both time-consuming and
costly. Despite its resource-intensive nature, Semantic Chunking offers a nuanced way to
maintain the integrity of the text’s meaning, with the potential for employing alternative

13

3. Background

semantic similarity metrics to streamline the process.

• Alternative Data Structure or Filters This module recognizes that not all data benefits
from being organized into chunks. It proposes using alternative data structures, such
as curated JSON formats or graph structures, to facilitate easier interpretation and
evaluation of the data. Additionally, incorporating filters, either within these structures
or alongside metadata in chunks, can effectively segregate semantically similar data
into distinct categories within a multi-dimensional database, enhancing the system’s
organizational efficiency.

• Relevant-Heatmap-Indexing1 An innovative approach to managing the distribution of
company data, Relevant-Heatmap-Indexing, zeroes in on pinpointing the segments
of data most frequently queried or deemed relevant. This is achieved by attaching a
counting label to each vector, thereby monitoring the frequency of retrieval. Over time,
this labeling technique helps identify the most commonly asked questions. With this
insight, there exists the possibility to bypass the traditional, time-consuming retrieval
step for these frequently asked queries. By employing cosine similarity, the system
compares the query vector with the vectors of the top N most asked questions. If
the similarity between the query and any of these top N vectors crosses a predefined
threshold, the process can directly proceed to the generation phase, sidestepping
the usual retrieval phase. This method not only streamlines the response process for
common queries but also ensures efficiency and speed in delivering relevant information.

At this stage, the vector store has already been established through one of the digestion
methodologies discussed previously. This vector store serves as the repository from which
information will be retrieved based on the user’s query. The emphasis now turns to how
the system interprets and processes these queries to match them with the relevant vectors
in the store. This phase is critical for ensuring that the retrieval process is both efficient and
accurate. In the following, we will delve into various modules that play a key role in bridging
the Digestion and Retrieval phases, each designed to optimize this transition and enhance the
overall performance of the RAG system.

3.2.3.2. Transition: Digestion to Retrieval Phase

• Hypothetical Document Embeddings (HyDE) HyDE addresses the challenge where the
semantic similarity between a question and its answer is not direct, by generating a
hypothetical document that closely aligns with potential answers. This strategy enhances
retrieval by focusing on the embedding similarity between the generated hypothetical
answer and real documents, rather than relying on direct semantic similarity between
the query and potential answers. HyDE emerges as a particularly effective solution
in domains where the LLM already possesses substantial knowledge, enabling more
accurate document retrieval by leveraging the model’s existing understanding. [14]

1This method is an original creation by the authors.

14

3. Background

• Query2Doc Query2Doc employs LLMs to create a comprehensive pseudo-document
by integrating the original query with additional contextual information. This method
aims to close the semantic gap between the query and document content, facilitating a
more accurate retrieval process by ensuring that the search mechanism can grasp the
full spectrum of the user’s intent. [15]

• ITER-RETGEN ITER-RETGEN represents a sophisticated approach in query rewriting,
where LLMs are used to iteratively refine the query by generating successive versions
that better capture the nuances of the user’s request. This iterative enhancement helps
in pinpointing the most relevant documents by gradually aligning the query’s semantics
with the available content. [16]

• Reverse Retrieval and Reading (RRR) RRR introduces a reverse-engineered framework for
query rewriting, flipping the traditional sequence of retrieval and reading. This module
prioritizes rewriting the query to better match the document content upfront, thereby
streamlining the retrieval process to be more effective and targeted. [12]

• STEP-BACKPROMPTING With STEP-BACKPROMPTING, LLMs are guided to perform
abstract reasoning and retrieval by focusing on high-level concepts derived from the
initial query. This method enables a broader, more conceptual approach to query rewrit-
ing, enhancing the model’s ability to address complex queries through a conceptual
lens. [17]

• Search Module Contrary to the similarity-based retrieval found in Naive/Advanced
RAG, the Search Module is specifically designed for particular scenarios, enabling
direct searches across additional corpora. This module leverages code generated by
LLMs, utilizes query languages such as SQL or Cypher, and employs custom tools for
integration. It facilitates searches across diverse data sources, including search engines,
textual data, tabular data, and knowledge graphs, broadening the scope of information
retrieval beyond the vector store. [18]

• Fusion RAG-Fusion aims to transcend the limitations of traditional search systems by
adopting a multi-query strategy. This approach enriches user queries into multiple,
varied perspectives through an LLM, capturing not only the explicit information sought
by users but also unveiling deeper, transformative insights. The fusion process executes
parallel vector searches for both the original and the expanded queries, employs intel-
ligent re-ranking for optimal result alignment, and combines the best outcomes with
new queries. This method ensures that search results are deeply aligned with the user’s
explicit and implicit intentions, facilitating more insightful and relevant information
discovery. [19]

• Task Adapter The Task Adapter module is designed to tailor the RAG framework to
a wide array of downstream tasks. UPRISE, a part of this module, automates the
retrieval of prompts for zero-shot task inputs from a pre-constructed data pool, thereby

15

3. Background

broadening the universality and applicability of the RAG system across various tasks
and models. [20]

• Query Specification Influenced by the principles of Retrieval-augmented Language Models
(RALMs), Query Specification addresses the challenge of complex user queries by
decomposing them into sub-queries. This process allows for a more targeted approach
during the Retrieval phase, where each sub-query is individually processed to gather
relevant context chunks. In the Generation phase, these retrieved pieces of context are
then synthesized to construct a comprehensive response to the original, complex query.
This method not only streamlines the retrieval process by focusing on specific aspects
of the query but also enhances the generation process’s ability to produce accurate and
complete answers by effectively piecing together the segmented insights obtained from
the sub-queries. [21]

As we progress further into the intricacies of the Retrieval-Augmented Generation (RAG)
framework, our focus shifts towards the modules that primarily operate within the retrieval
step. This crucial phase is where the system sifts through the pre-processed and indexed
data to find information that best matches the user’s query. The modules designed for this
step are pivotal in enhancing the precision and efficiency of information retrieval, ensuring
that the subsequent generation phase is fed with the most relevant and accurate data. In the
following, we’ll explore some of these key modules, each playing a distinct role in refining
the retrieval process:

3.2.3.3. Retrieval Phase

• Hybrid Search Exploration or Ensemble Retriever This module underscores the versatility
of the RAG system by blending various search techniques such as keyword-based,
semantic, and vector searches. Hybrid Search Exploration capitalizes on the distinct
advantages of each method to cater to a wide range of query types and information
requirements. This multifaceted approach not only ensures the retrieval of highly
relevant and contextually rich information but also bolsters the retrieval strategy’s
robustness, significantly enhancing the RAG pipeline’s effectiveness.

• Recursive Retrieval and Query Engine or Child-Parent-Retriever The Recursive Retrieval and
Query Engine adopts a phased approach to information retrieval. Initially, it focuses on
acquiring smaller chunks to grasp key semantic meanings, followed by retrieving larger
chunks that offer more contextual details in subsequent stages. This modular retrieval
strategy, also known as Child-Parent-Retriever, is designed to balance efficiency with
the need to provide the LLM with contextually comprehensive responses, optimizing
the retrieval process for depth and relevance.

• Agentic Retriever The Agentic Retriever module introduces a strategic dimension to
the retrieval phase, acknowledging that some queries might be answered with general
knowledge already present within the multi-dimensional embedding space. By iden-
tifying such instances, the Agentic Retriever can bypass the retrieval step altogether.

16

3. Background

This preemptive action aids in minimizing the chances of generating inaccurate or false
responses during the generation phase, especially when faced with irrelevant context,
streamlining the process towards more reliable and factual outputs.

• Low-Dimensionality Retriever2 The Low-Dimensionality Retriever begins with a dimen-
sionality reduction step on the embedding space, revealing underlying clusters within
the dataset using mechanisms like K-means clustering. During retrieval, it first assesses
the similarity between the input query and identified clusters, focusing subsequent
searches on the original vectors within the relevant cluster. This elegant approach lever-
ages clustering to provide an initial high-level overview of potential relevance before
delving into detailed vector analysis, streamlining the retrieval process by concentrating
efforts on the most promising clusters.

Bridging the retrieval and generation phases in the RAG framework is essential for stream-
lining the use of retrieved data. This stage focuses on refining and preparing data to ensure
the generation phase efficiently produces relevant responses. Without this crucial preprocess-
ing, the LLM might struggle to interpret the data accurately while also generating suitable
answers. Effective data flow and preparation enable the LLM to concentrate on crafting
high-quality responses, enhancing the RAG system’s performance by ensuring responses are
both precise and contextually appropriate. The following moduls introduce some selected
ways to do that:

3.2.3.4. Transition: Retrieval to Generation Phase

• Information Compression Information Compression addresses the challenge of managing
the extensive volume of data retrieved from the knowledge base. Despite ongoing efforts
to expand the context length capabilities of LLMs, limitations persist, making it difficult
for models to handle vast amounts of context efficiently. Information compression
becomes crucial in such scenarios, aiming to distill the retrieved data to its essence.
This process helps in minimizing noise, circumventing context length constraints, and
ultimately, improving the generation phase’s output by providing a more focused and
relevant set of information for the LLM to process.

• Diversity Ranker This module emphasizes the importance of document diversity to
mitigate redundancy in the retrieved information. By prioritizing a variety of documents,
Diversity Ranker ensures that the content fed into the LLM covers a broad spectrum of
perspectives, enhancing the richness and comprehensiveness of the generation output.

• LostInTheMiddleRanker Addressing the challenge of crucial information getting buried
in the middle of retrieved content, LostInTheMiddleRanker strategically places key
documents at both the beginning and the end of the context window. This method
ensures that significant information is immediately accessible to the LLM, aiding in the
generation of more accurate and relevant responses.

2This method is an original creation by the authors.

17

3. Background

• Re-Formatting Given the variability in user input and the potential for minor changes
throughout the RAG pipeline to significantly impact the LLM’s output, it’s crucial to
ensure consistency in the structure of the information fed into the generation phase.
Re-Formatting addresses this need by standardizing the output into a JSON format.
This approach enables precise extraction and utilization of desired content, ensuring
that the generation phase receives information in a predictable and structured form,
facilitating more accurate and relevant responses.

• Semantic Diversity Unlike a specific module, Semantic Diversity embodies a strategic
approach to handling retrieved information. It acknowledges the possibility that the
top-ranked chunks from retrieval might contain very similar information, potentially
overlooking diverse yet relevant insights related to the user’s query. To counteract
this, Semantic Diversity involves grouping the retrieved chunks to maintain a broad
spectrum of information while ensuring that the content processed in the generation
phase encompasses a wide range of semantic perspectives. This strategy prevents the
omission of crucial, albeit less similar, information, enriching the generated responses
with comprehensive and varied insights.

Within the generation phase of the RAG framework, several challenges can arise that may
compromise the quality of the generated response. Despite meticulous efforts in previous
phases, issues such as insufficient context provided during retrieval or the model’s propensity
for hallucination—where it generates content unrelated to the query—can significantly impact
outcomes. Hallucinations particularly occur when the model, instead of leveraging the
retrieved context, defaults to generating information based on its training, disregarding the
user’s specific question. Possible moduls at this stage are:

3.2.3.5. Generation Phase

• (Dynamic) In-Context-Learning (ICL) In the generation phase of the RAG framework, the
primary objective for the LLM is to focus on generating a coherent and contextually
relevant response. The introduction of ICL plays a crucial role by providing the LLM
with examples that align with the expected response format, guiding the model towards
producing outputs that closely match the query’s intent. Taking this a step further,
Dynamic ICL enhances this process by dynamically selecting semantically similar
Question-Answer pairs during the generation, ensuring that the guidance is not only
relevant but also specifically tailored to the semantic domain of the query. This approach
prevents the dilution of the LLM’s focus with unrelated information, facilitating the
generation of precise and contextually appropriate answers.

• Stop Token This module is particularly useful for managing the output of smaller,
open-source models, which sometimes generate endlessly without reaching a natural
conclusion. Implementing a Stop Token within the generation script provides a mech-
anism to define a clear endpoint for the prompt generation, ensuring that the model
terminates its output at an appropriate juncture. This is crucial for maintaining the

18

3. Background

efficiency of the generation process and ensuring that the resulting content is concise
and to the point, avoiding unnecessarily prolonged or rambling text.

3.3. Evaluation

In assessing the performance of NLP models, especially within the domain of generated text, it
is pivotal to employ robust evaluation metrics. Two notable metrics that have been extensively
used are BLEU (Bilingual Evaluation Understudy) and ROUGE (Recall-Oriented Understudy
for Gisting Evaluation). These metrics, while fundamental in measuring the similarity
between machine-generated text and reference texts, exhibit limitations when applied to
complex NLP tasks such as RAG for question-answering, due to their focus on surface-level
lexical similarities. Recognizing these constraints, this chapter will further introduce and
discuss alternative metrics that have emerged specifically for the nuanced evaluation of RAG
systems. These advanced metrics aim to provide a more accurate assessment by considering
the semantic accuracy and contextual relevance essential for evaluating the efficacy of RAG
models.

The BLEU score, essential for machine translation, measures translation quality by com-
paring machine outputs with human references, focusing on n-gram precision and applying
a brevity penalty for short translations to match reference length. However, in RAG for
question-answering, BLEU’s emphasis on lexical similarity over semantic accuracy limits its
usefulness. It overlooks the importance of context and meaning, penalizing answers that
are semantically correct but lexically different from references, highlighting the necessity
for metrics in RAG systems that assess semantic and contextual understanding beyond just
word-for-word matching.

The ROUGE metric, designed for evaluating text summarization by comparing machine-
generated summaries to reference texts, assesses content overlap through n-grams and other
sequences, focusing on how well the summary captures reference content. However, in
the context of RAG for question-answering, ROUGE’s emphasis on surface form overlap
limits its effectiveness. RAG demands a deep understanding of context and the ability to
integrate information from multiple sources, which goes beyond mere content matching. Thus,
ROUGE’s approach may miss the mark in recognizing semantically accurate or contextually
fitting answers that don’t exactly replicate reference phrasing, pointing to a need for metrics
that evaluate semantic and contextual accuracy in RAG systems.

In our context, it is imperative to distinguish between the quality of retrieval and the
quality of generation. This distinction is crucial because the effectiveness of a RAG system
hinges not only on generating accurate and contextually relevant responses but also on
its ability to retrieve the most pertinent information from a vast corpus. Assessing these
two components separately ensures a comprehensive evaluation of a RAG model’s overall
performance, highlighting areas for improvement in both retrieving relevant documents and
generating coherent, semantically rich answers.

19

3. Background

3.3.1. RAG Evaluation

The growing importance of RAG in NLP requires a detailed evaluation method that separates
Retrieval Quality and Generation Quality. This distinction is crucial because the success of
RAG models depends on the accuracy of the retrieved information and the relevance and
clarity of the generated text. As RAG technology evolves and finds broader applications, it’s
vital to improve these areas to enhance performance in different situations. [22, 23, 24]

Retrieval Quality Retrieval Quality focuses on the effectiveness of the RAG model’s re-
triever component in sourcing contextually relevant information. This aspect of evaluation
utilizes standard metrics from the domains of search engines, recommendation systems,
and information retrieval, such as Hit Rate, Mean Reciprocal Rank (MRR), and Normalized
Discounted Cumulative Gain (NDCG). These metrics offer insights into how well the retrieval
mechanism can identify and prioritize pertinent information from a vast corpus, a critical
step for ensuring the subsequent generation process is based on accurate and relevant context.
[25, 26]

Hit Rate is a straightforward metric that measures the proportion of queries for which the
correct answer is found within the top-k retrieved documents. It effectively quantifies the
system’s success rate in presenting the right answer among the initial set of guesses. The Hit
Rate is calculated using the formula:

Hit Rate =
Number of hits in top-k

Total queries

Mean Reciprocal Rank (MRR) offers insights into the average rank position of the first
relevant document for a series of queries. It is computed as the average of the reciprocal
ranks of the first relevant document across all queries, with the formula:

MRR =
1
Q

Q

∑
i=1

1
ranki

where Q is the number of queries, and ranki is the rank position of the first relevant docu-
ment for the i-th query. MRR values range from 0 to 1, with 1 indicating perfect retrieval
performance.

Normalized Discounted Cumulative Gain (NDCG) captures the effectiveness of a retrieval
system by comparing the ranked list of documents it produces to an ideal ranking, taking
into account the position of relevant documents. The DCG is calculated as:

DCGk =
k

∑
i=1

2reli − 1
log2(i + 1)

where reli is the relevance score of the document at position i and k is the rank cut-off.
NDCG normalizes DCG by the Ideal DCG (IDCG), which represents the perfect ranking, thus
allowing for comparisons across different queries and systems:

NDCGk =
DCGk

IDCGk

20

3. Background

These metrics collectively provide a comprehensive assessment of the retrieval phase,
highlighting not just the ability to fetch relevant documents but also the efficiency of ranking
them in a manner that aligns with user expectations. Understanding and optimizing these
metrics can significantly enhance the overall performance of RAG models, ensuring that the
generation phase is supported by the most pertinent and contextually appropriate information.

Generation Quality The evaluation of Generation Quality in RAG models is a critical process
that can be conducted using larger models (e.g., GPT 4) or human evaluators. Regardless
of the method, the evaluation hinges on three pivotal elements: the Original Question, the
True Answer, and the Predicted Answer from the LLM. These components are essential for
a thorough and accurate assessment across the four main criteria: Relevance, Coherence,
Fluency, and Faithfulness. Each criterion has specific scoring criteria and steps to ensure a
comprehensive assessment:

1. Relevance Score Criteria: Evaluates on a scale of 1-5 the extent to which the Predicted
Answer encompasses the content in the True Answer, relative to the Original Question.
Answers deviating from the information mentioned in the True Answer are penalized.
Score Steps: Review the Original Question, Predicted Answer, and True Answer. Assess
the relevance of the Predicted Answer’s content, ensuring it aligns with the key points
of the True Answer and the Original Question’s intent. Assign a relevance score from 1
to 5, based on coverage and pertinence.

2. Coherence Score Criteria: Assesses on a 1-5 scale the structural and organizational
quality of the Predicted Answer, ensuring it forms a cohesive narrative relevant to the
Original Question and True Answer. Score Steps: Analyze the True Answer for its main
topic and key points. Compare the Predicted Answer for structural alignment and
logical presentation. Score coherence based on the logical flow and clarity in relation to
the Original Question.

3. Fluency Score Criteria: Rates from 1 to 5 the linguistic quality of the Predicted Answer,
focusing on grammar, spelling, punctuation, word choice, and sentence structure, in
response to the Original Question. Score Steps: Evaluate the Predicted Answer for
linguistic errors and readability. Assign a fluency score reflecting the ease of reading
and understanding in the context of the Original Question and True Answer.

4. Faithfulness Score Criteria: Measures factual alignment on a scale of 1-5 between the
Predicted and True Answers, penalizing inaccuracies or "hallucinated" facts not present
in the True Answer related to the Original Question. Score Steps: Verify the factual
accuracy of the Predicted Answer against the True Answer. Assign a score based on the
presence and accuracy of factual information, ensuring it faithfully represents the True
Answer in response to the Original Question.

This comprehensive evaluation framework, encompassing Relevance, Coherence, Fluency,
and Faithfulness, ensures a nuanced understanding of Generation Quality in RAG models.

21

3. Background

For a detailed description of the scoring criteria and steps associated with each evaluation
metric, refer to the Appendix of this thesis. A

Using a combination of Hit Rate from the Retrieval Quality and the just mentioned four
metrics from the Generation Quality, we will see in Chapter Methodology two new approaches
at evaluating our RAG frameworks Generation Quality: RAG Confusion Matrix and RAG
AVG-Metric Evaluation - both in using GPT 4 and Human Evaluators’ in assessing our
metrics.

22

4. Corpora

4.1. TUM Studyprogram Corpora

In developing a Question-Answer RAG framework, it is imperative to establish a connection
to an external data source. This requirement stems from the intrinsic nature of RAG systems,
which rely on external information to generate responses. As outlined in the "Modular RAG"
chapter, various methods exist for constructing such corpora. A common approach involves
assembling a vector store that houses all relevant data, enabling retrieval mechanisms.

However, this project presented unique challenges due to the homogeneity observed within
the study program descriptions. Preliminary data analysis revealed that the language and
content across different study program websites were remarkably similar. This similarity is
understandable, given that users can usually navigate these websites easily due to consistent
structural layouts, quickly locating the desired information. Consequently, employing a
standard corpora would likely result in the retrieval of overlapping information from multiple
study programs, diminishing the specificity and relevance of the generated responses. Faced
with this dilemma, two potential solutions emerged: either develop a filtering system capable
of isolating specific data segments or leverage a structured data format like JSON or a database,
which inherently facilitates the selection of discrete data sections. Further investigation into
the structure of the study program content, which typically follows a pattern of a heading
followed by its associated content, steered the decision towards the latter option. Choosing a
JSON format was driven by the desire to reduce preprocessing efforts and enable the LLM to
conduct the required contextual interpretation during the answer generation phase.

The chosen approach resulted in the creation of a JSON file that connects data from both
the official TUM study program website and individual faculty websites. The rationale and
methodology behind the construction of this file, as well as its implications for the RAG
framework’s effectiveness, will be elaborated upon in subsequent sections. As a preliminary
glimpse into this JSON structure, below are the first key-values on the "Mathematics in Data
Science Master of Science" program. This segment illustrates the depth and organization of
the data compiled, showcasing the comprehensive approach taken in this project to enhance
the RAG system’s performance through targeted data structuring.

1 {
2 "Mathematics in Data Science Master of Science (M.Sc.)": {
3 "level": "Master of Science (M.Sc.)",
4 "studiengang": "Mathematics in Data Science",
5 "description": "The master’s degree program Mathematics in Data Science

↪→ combines a high-profile education in mathematics with an emphasis on

23

4. Corpora

↪→ the burgeoning area of Big Data.",
6 "school": "The master’s degree program Mathematics in Data Science

↪→ combines a high-profile education in mathematics with an emphasis on the
↪→ burgeoning area of Big Data.",

7 "school_website#1": "https://www.ma.tum.de/en/studies-information/
↪→ study-programs-mathematics/master-mathematics-in-data-science.html",

8 "Type of Study": "Full Time",
9 "Standard Duration of Studies": "4 (fulltime)",

10 "Credits": "120 ECTS",
11 "Main Locations": "Garching",
12 "Application Period": "Winter semester: 01.01. to 31.05. Summer

↪→ semester: 01.09. to 30.11.",
13 "Admission Category": "Aptitude Assessment for Master",
14 "Start of Degree Program": "Possible for both winter and summer

↪→ semester",
15 "Costs": "Student Fees: 85.00 EUR, Tuition fees for international

↪→ students",
16 "Required Language Proficiency": "English",
17 "Program profile": "The Master’s in ’Mathematics in Data Science’ is a

↪→ full-time degree program that usually takes two years to complete.
↪→ Applicants must have a bachelorâs degree in Mathematics or a bachelorâs
↪→ degree in Computer Science (with minor Mathematics) or an equivalent
↪→ qualification in a similar field of study. The master’s program ’
↪→ Mathematics in Data Science’ is oriented towards students who want to
↪→ receive a high sprofile education in mathematics with an emphasis on the
↪→ burgeoning area of Big Data. Graduates of this program are qualified to
↪→ understand in detail complex techniques for data editing and data
↪→ analysis, how to adapt complex models ..."

18 }
19 }

Listing 4.1: JSON snippet for Mathematics in Data Science

24

4. Corpora

Figure 4.1.: Caption describing the figure.

The JSON snippet in listing 4.1 provides a glimpse into our Corpus, specifically focusing
on the Mathematics in Data Science study program. The diversity in the number of topics
covered by a study program reflects its complexity, the effort faculty members put into
detailing their programs online, and the distribution of information across various headings.
Figure 4.1 illustrates the variation in topic numbers across different study programs. It reveals
that most programs encompass 30 to 40 topics, although there are outliers with over 70 topics,
complicating the retrieval process.

4.1.1. Official TUM website

Before starting this subsection, it’s paramount to acknowledge a fundamental distinction
between the degree programs as presented on the official TUM website and those detailed on
individual faculty pages. This segment aims to portray the nature of information typically
encountered on the TUM central website, setting the groundwork for understanding its
contribution to the construction of the TUM Studyprogram Corpora.

The TUM website serves as a comprehensive repository, hosting a wide array of information
pertaining to its degree programs. A cursory examination of the site structure, particularly
through the lens of HTML headings ranging from H1 to H5, reveals a consistent pattern of
content organization. These headings include the study program and degree level alongside
sections covering program overviews, "Key Data", "Study Information", "Application and
Admission", and more. The content covered under these headings range from detailed pro-
gram descriptions, admission requirements, curriculum specifics, study structure, language
of instruction, study fees, to contact information for faculty and study coordination. This

25

4. Corpora

uniformity in website architecture not only facilitates intuitive navigation for human users
but also lays a solid foundation for structuring our JSON file with a clear hierarchy and
segmentation of data.

This inherent structure is crucial; it enables users to swiftly pinpoint the information they
seek, mirroring the objective behind the curated JSON structure aimed at optimizing our
RAG framework. The deliberate organization of headings contributes significantly to the
pre-processing phase, imbuing the dataset with an intrinsic level of knowledge that is vital
for the subsequent generation and retrieval processes.

Venturing beyond the surface-level organization, we embarked on a more granular explo-
ration of the content through the implementation of a Python script. This script meticulously
parses through the textual data, segmenting it into chunks of approximately 1000 charac-
ters. Each chunk is then analyzed in conjunction with the associated study program and its
preceding topic to dynamically refine and update the topic labels. This nuanced approach
to topic categorization considered two methodologies: the extraction of key terms akin to a
Named-Entity-Recognition (NER) algorithm or generating short summaries of topic contents.
Opting for the former, the decision was driven by the strategic goal to later utilize cosine
similarity for comparing topics, necessitating a dataset enriched with distinct, highly represen-
tative keywords that encapsulate the essence of each topic. This meticulous process of topic
refinement underscores the thesis’s commitment to enhancing the accuracy and relevance of
the RAG system’s output, ensuring that the generated responses are not only precise but also
contextually aligned with the query at hand.

4.1.2. Individual Faculty website

Building upon the insights from the study program central website, this section ventures into
the nuanced realm of individual faculty websites. Unlike the centralized TUM website, the
websites associated with specific faculties exhibit a remarkable degree of variability. This
diversity manifests in several dimensions: the depth and breadth of content, the organizational
structure and number of headings and the presentation format. Some faculties have their
details spread over a single webpage, while others span multiple pages; some offer content
in both German and English, whereas others limit themselves to a single language. This
heterogeneity poses unique challenges for data retrieval, underscoring the necessity for a
tailored approach.

The task of extracting information from these diverse sources proved to be anything but
straightforward. Standard web parsing tools often fell short, unable to navigate the complex
and varied layouts of faculty websites. In response, a custom parser was developed, designed
to retrieve div boxes that structure these web pages, extracting the textual content therein.
A solution was necessary in general, since their depth of information often surpasses that
of the central TUM site, offering insights that are crucial for an accurate and comprehensive
response generation.

Acknowledging the significant overlap in information between the official TUM website and
individual faculty pages, no further post-processing was deemed necessary upon connecting
these data sources. It was observed that information common to both platforms holds

26

4. Corpora

particular relevance, likely to be favored during the retrieval phase. This realization motivated
the decision to integrate the data from these two origins without additional refinement,
aiming to preserve the integrity and importance of the shared knowledge.

The process of data collection entailed visiting each faculty’s website, employing the custom
parser to harvest the information contained within. It is important to note an exception in
this endeavor: the faculty of management. This faculty’s website diverges from the norm not
only in its exclusion of div box structuring for content organization but also in dispersing
its information across multiple pages. This configuration presented a significant obstacle
for the parser, complicating data extraction efforts. Given the scope and resources allocated
to this thesis, dedicating additional time to manually gather data from these more complex
sites was not feasible. Consequently, queries pertaining to the management faculty might not
be answered with the expected depth or accuracy, reflecting the limitations inherent in this
research project’s methodology.

4.2. Question-Answer Set

Before diving into the intricacies of the Question-Answer Set, it’s important to establish
a foundation for what our model will infer. To facilitate this, we developed a script that
navigates through the previously discussed JSON structure, generating Question-Answer
pairs. This process involves randomly selecting a study program (root key) and then delving
into its nested directory to pick a topic (top level key). The topic’s content (nested value)
is then fed along with the study program and topic information into GPT 4, which in turn
generates a Question-Answer pair. This procedure is repeated 200 times; producing what
we’ll refer to as the Question and True Answer for the sake of our evaluations.

1 {
2 "1": {
3 "question": "What are the tuition fees for international students in

↪→ the Aerospace Master of Science (M.Sc.) program?",
4 "answer": "The tuition fees for international students in the Aerospace

↪→ Master of Science (M.Sc.) program are 85.00 EUR.",
5 "study_program": "Aerospace Master of Science (M.Sc.)",
6 "section": "Tuition fees, International fees",
7 "source": "Student Fees: 85.00 EUR, Tuition fees for international

↪→ students"
8 }
9 }

Listing 4.2: JSON snippet for Question-Answer Set

27

4. Corpora

4.3. Evaluation Set

Adjacent to the Question-Answer Set, the Evaluation Set plays a crucial role in discerning
the performance nuances of each instantiated RAG framework and their respected module
permutation. Evaluating a RAG system’s efficacy hinges on two principal dimensions:
Retrieval Quality and Generation Quality. Ideally, the evaluation would encompass all 200
inferences for each run to ensure comprehensive coverage. However, such an extensive
evaluation would be prohibitively resource-intensive. The pragmatic approach, therefore,
involves selecting a representative subset of inferences from each run for assessment. This
necessity arises from the specific challenges within the Generation Quality metric, where the
performance evaluation must consider scenarios both when the correct source is accurately
retrieved and when it is not.

For the construction of the Evaluation Set, each of the 200 Questions is funneled through our
RAG framework configurations. We not only decide which modules to incorporate but also
experiment with enabling and disabling different modules to explore all possible permutations.
Consequently, for a single LLM, this process results in 1600 individual inferences (calculated
as 1 LLM * 8 module permutations), considering each permutation of the modules.

Taking into account that we utilize 7 different LLMs—with 5 operating on both German
and English datasets, and 2 only on English—the total comes to 19,200 runs (calculated as
1,600 inferences *(5 LLMs * 2 languages + 2 LLMs * 1 language)). As a result, we organize the
output into 96 distinct JSON files, each representing a unique run. The naming convention
for each file encodes critical information about the run:
<LLM_NAME>_<NUMBER_OF_PARAMS>_<LANGUAGE>_<MODULE_PERMUTATION> providing at a glance
the LLM used, the number of parameters, the language, and the specific module permutation
for that run.

This strategy acknowledges the ideal of evaluating all 200 inferences per run but recognizes
the constraints imposed by practical considerations. As the number of evaluated inferences
within a single run expands, we progressively approximate the true performance metric of
that specific RAG configuration. Since we have about 96 runs, we decided with respect to our
resources to auto evaluate only 20 inferences per run. This context leads to the creation of
96 unique evaluation sets, tailored to each run’s outcomes, to accurately reflect each RAG
framework’s interaction with the data under varied conditions. By focusing on a subset of
inferences, we aim to capture a meaningful snapshot of each configuration’s performance,
accommodating evaluations where the correct source has either been successfully retrieved or
missed. Here is again a snippet of one selected local run:

1 {
2 "1": {
3 "question": "What are the tuition fees for international students in

↪→ the Aerospace Master of Science (M.Sc.) program?",
4 "answer": "The tuition fee for international students in the Aerospace

↪→ Master of Science (M.Sc.) program is 85.00 EUR.",
5 "true_answer": "The tuition fees for international students in the

28

4. Corpora

↪→ Aerospace Master of Science (M.Sc.) program are 85.00 EUR.",
6 "studyprogram": "Aerospace Engineering Master of Science (M.Sc.)",
7 "true_studyprogram": "Aerospace Master of Science (M.Sc.)",
8 "section": [
9 "Student Fees, Tuition",

10 "Aerospace Engineering Master",
11 "Aerospace Engineering Careers",
12 "Aerospace Engineering, TUM"
13],
14 "true_section": "Tuition fees, International fees",
15 "source": "Student Fees: 85.00 EUR, Tuition Fee\nAwarded by TUM, the

↪→ program is conducted in Singapore and serves to provide graduates with
↪→ an in-depth knowledge in the field of aerospace engineering, focusing in
↪→ the areas of aeronautical design, space design and research.\nGraduates
↪→ of the Master’s degree course are able to apply, analyse, evaluate and
↪→ develop knowledge and methods from the aerospace field whilst
↪→ considering the relevant technical, scientific, economic, environmental
↪→ and legal aspects. They are also equipped to employ a highly process
↪→ driven and verifiable approach to work, a critical requirement in the
↪→ aerospace sector. Graduates are well versed in competencies relating to
↪→ complete flying systems (fixed wing aircraft, rotary wing aircraft,
↪→ helicopters, fuselages, spacecraft and satellites) and, depending on the
↪→ other course modules selected, also have thorough knowledge of
↪→ transport systems, flight systems for inside and outside the atmosphere
↪→ as well as from the disciplines aerodynamics, lightweight design, flight
↪→ system dynamics, flight propulsion, control technology, aircraft design
↪→ and space travel technology. Furthermore, graduates have specific
↪→ knowledge of production methods and materials science (from development
↪→ to application) in order to meet the unique and extreme demands of the
↪→ aerospace field (e.g. safety, reliability, quality and structural
↪→ integrity). Graduates are able to understand transport systems as
↪→ complete systems (including their sub-systems) and also to analyse,
↪→ evaluate and develop them. The knowledge and skills they acquire in
↪→ understanding highly complex dynamic systems with all their
↪→ characteristics and operating conditions makes them qualified for other
↪→ fields in addition to aerospace. This course’s graduates are in fact
↪→ well qualified for other sectors such as vehicle construction or
↪→ information technology.\n",

16 "true_source": "Student Fees: 85.00 EUR, Tuition fees for international
↪→ students",

17 "queries": [],
18 "language": "en",

29

4. Corpora

19 "query_duration": 3.639385461807251,
20 "child_parent_retriever": false,
21 "multi_query": false,
22 "bm25_retriever_weight": 0.5,
23 "in_context_learning": false
24 }
25 }

Listing 4.3: JSON snippet for RAG run Llama 2 13B (bm25)

30

5. Methodology

This chapter is designed to explicate both the theoretical underpinnings and practical im-
plementations of the RAG framework utilized in this study. It aims to detail why specific
decisions were made at various stages of the RAG framework’s development, particularly
in light of the 96 different runs that form the core of our experimental analysis. These runs
are distinguished by the activation and deactivation of modules, the employment of various
LLMs, and the choice between the English and German languages. Furthermore, this chapter
will explain the process of constructing the RAG framework, including the creation of a
comprehensive JSON file that encompasses all study programs in both German and English,
ensuring a robust dataset for the RAG system to draw upon.

In subsequent sections, the focus will shift to the LLM models used within the RAG
framework, encompassing both open-sourced and closed-sourced models and the specific
templates applied across different LLMs and languages. The architecture of the RAG system,
detailed in this chapter, is modular, covering the three principal phases of operation: document
retrieval, user query processing, and answer generation. Key modules such as the Multi-
Query module (Generation Phase), Child Parent Retriever and Ensemble Retriever (Retrieval
Phase), and In-context-learning (Generation Phase) will be discussed to highlight their roles
in enhancing the framework’s performance. Each module’s inclusion reflects strategic choices
made to optimize the system’s efficiency and effectiveness in generating contextually relevant
answers.

5.1. Models

In the landscape of LLMs, there’s a notable differentiation between general-purpose text
generation models and instruct fine-tuned models. General-purpose models are designed to
generate a wide range of text outputs without specific instructions. In contrast, instruct-tuned
models, as the name suggests, are refined on datasets that include explicit instructions or
prompts followed by appropriate responses. This training method enhances the models’
ability to understand and execute the instructions provided in prompts, leading to outputs
that better match the intended outcome.

These instruct-tuned models signify a shift towards more task-oriented applications of
LLMs, offering precision and compliance with user requests across various tasks. This
distinction is crucial for our study, which incorporates a diverse array of models to cover
a broad spectrum of capabilities. Each model’s unique training and potential instruction-
based fine-tuning contribute differently to the RAG framework. Although delving into the
specific training details of each model is beyond this thesis’s scope, key information about

31

5. Methodology

the models will be presented, highlighting their importance and expected impact on the RAG
framework’s effectiveness

5.1.1. Open-Sourced Models

In our study, we have chosen to incorporate open-source models for two primary reasons.
Firstly, to evaluate their performance relative to closed-source models available on the market,
providing insights into how open-sourced models fare in various tasks. Secondly, utilizing
open-source models presents a significant cost advantage, as expenses are incurred only
during the inference step, substantially reducing the overall cost of deploying Large Language
Models (LLMs) for extensive testing and development.

• We incorporate two models from the Llama family, llama2:7b-chat and llama2:13b-chat,
notable for their instruction-following capabilities which are essential for processing
user queries within a structured template. These templates are designed with the flexi-
bility to include or exclude Question-Answer pairs, facilitating our in-context-learning
module. The advancement of Llama 2 models is rooted in an enhanced pretraining
strategy that emphasizes robust data cleaning, a refreshed data mix, and an increased
training volume, among other improvements. This strategy ensures that the models
are trained on a carefully selected corpus, excluding sensitive data and focusing on
up-sampling reliable sources to improve accuracy and minimize inaccuracies, thus
achieving a balance between cost and performance. Both models operate with a context
window of 4.096 tokens. [27] The template for better understanding:

1 <s>[INST] <<SYS>>{sp}
2 {cp}<</SYS>>
3 Human: {q1} [/INST] Response: {a1} </s>
4 <s>[INST] Human: {q2} [/INST] Response: {a2} </s>
5 <s>[INST] Human: {q3} [/INST] Response: {a3} </s>
6 <s>[INST] Human: {{user_input}} [/INST] Response:

Note that sp stands for System Prompt, cp for Context Prompt, and q*, a* with *
∈ {1, 2, 3} are used only in the In-Context-Learning step. {user_input} will be
included from the user during the Generation Phase.

• Another model is mistral:7b-instruct, which at his time of being published outshines
similar open-source models in areas such as commonsense reasoning, world knowledge,
reading comprehension, and code. It offers the performance equivalent to a hypothetical
Llama 2 model more than three times its size, showcasing superior cost and memory
efficiency. The model utilizes a sliding window attention mechanism for a linear
compute cost, significantly improving processing speed for lengthy sequences, with a
context window of 4096 tokens. Similar to Llama models, we used the custom template
for Mistral 7B. [28]

32

5. Methodology

• Alongside Llama 7B/13B and Mistral 7B, we also leverage the capabilities of vicuna:7b-16k
and orca-mini:7b-v3 models. Vicuna (16k) is an evolution of the Llama 2, enhanced
through supervised instruction fine-tuning and linear RoPE scaling, trained on approxi-
mately 125K conversations from ShareGPT.com. Orca Mini is part of the OpenLLaMa-7B
model suite, benefits from explain-tuned datasets derived from Instructions and Input
from WizardLM, Alpaca, and Dolly-V2 datasets, utilizing construction approaches from
the Orca Research Paper; this model is skilled at generating explanations with a default
context window of 2.048 tokens.

For practical implementation, we utilized the Ollama wrapper provided by LangChain. This
choice was motivated by the simplicity and efficiency of running the models, streamlining
the process of integrating these open-source LLMs into our RAG framework.

5.1.2. Closed-Sourced Models

• Now, we examine the use of closed-source models gpt-3.5-turbo-1106 and GPT
4-0125-preview for our RAG framework, due to their advanced generative capabilities
and large context windows, 16.385 and 128.000 tokens respectively. While specifics about
their training data and internal mechanisms remain undisclosed, their performance
in language comprehension, creativity, and handling complex queries is noteworthy.
The choice of these models is driven by the diversity in training approaches and the
expected variation in response quality across different tasks. Similar to the open-source
models here is a representation of the template used:

1 ### System:
2 {sp}
3 ### Context:
4 {cp}
5 ### Few-shot-example:
6 Q1: {q1}
7 A1: {a1}
8 Q2: {q2}
9 A2: {a2}

10 Q3: {q3}
11 A3: {a3}
12 ### Human: {{user_input}}
13 ## Response:

Note, that we are providing the System Prompt inside the prompt itself. This has been
choosen deliberately, due to the fact, that we wanted to have similar starting points for
all the models and not alter the configuration of any models in any way.

33

5. Methodology

5.2. Pre-Retrieval Phase

Within the scope of this thesis, having established a TUM study program dataset and selected
LLMs, we now transition to the phase that bridges digestion and retrieval, termed as the
Pre-Retrieval phase. This segment is pivotal, considering that each language model is adapted
to a unique template, designed to dynamically incorporate necessary variables for every
inference process. This phase marks the initial interaction with the prepared JSON file, which
has been meticulously cleaned and structured to facilitate efficient filtering based on specific
study programs and topics. Herein, we delve into the methodologies employed to seamlessly
navigate from the digestion of prepared data to the strategic retrieval of contextually relevant
information.

As discussed four modules play crucial roles: Multi-Query, Child-Parent-Retriever, En-
semble Retriever, and In-Context-Learning. These modules are designed to enhance the
framework’s flexibility, allowing for precise adjustments based on the task at hand. In the
following we will illuminate what happens within our RAG framework. As mentioned
modules can be either be activated or deactivated; at every time there is the possibility to do
one of the two, we are going to explain what happens when we skip the module and what
happens when we enable the module. Typically for this chapter skipping the module will be
the default.

The initial step in the process is aiming to accurately determine the study program and
topic. This stage, while akin to data retrieval, is distinctively positioned outside the Retrieval
Phase. This delineation underscores our strategic decision to emphasize that the Retrieval
Phase exclusively leverages specific modules for extracting the data that will later be used as
context for the Generation Phase.

Identifying the appropriate study program and topics acts as a filtering mechanism. The
selection of a study program is executed by correlating the user’s query with a predefined list
of programs, which are read from the JSON file positioned as root keys. Combining the user
query and the possible study programs in the following prompt template yields the answer.
This process ensures the selection of the most relevant study program based on the query
provided.

1 ### System:
2 The following will be a query by a student about study programs of the

↪→ Technische Universitaet Muenchen (TUM). I want you to output the study
↪→ program the student is having questions about. Only output the study
↪→ program!

3 ### Context:
4 Please note, that we only need the study program. Do not self-reference,

↪→ comment or give any notes. Only output the study program. Here are the
↪→ possible study programs: {listed_root_level_keys}

5 ### Human:
6 How many ECTS points do I need for Mathematics in Data Science?
7 ## Response:

34

5. Methodology

To ensure we later accurately retrieve topic values, we match the generated study program
name with the exact names in our dataset. We address potential mismatches by comparing the
generated name’s cosine similarity with all study programs in our vectorstore. The program
with the highest similarity score is selected, bypassing the initial LLM output for greater
precision in identifying the correct study program.

It’s important to note that our framework does not incorporate user journey safeguards or
checks at this point, as the primary focus is on achieving accurate and relevant information
retrieval. The decision to omit such features stems from the goal of exploring the framework’s
efficacy in a controlled, research-oriented environment, rather than user interaction optimiza-
tion. Following the determination of the study program, the next step involves pinpointing
the specific topic within that program.

Upon obtaining the study program from the initial query, the next step is to put the user’s
query in a structured template designed to direct the model’s focus towards generating topics
relevant to the study program:

1 ### System:
2 Classification task: You will get a question from the user, and your task is to

↪→ classify the question in the most likely class.
3 ### Context:
4 Please note, that we only need the output. Do not self-reference, comment or

↪→ give any notes. Only output the most likely class. Here are the possible
↪→ classes: {top_level_keys}

5 ### Few-shot-example:
6 Q1: "I am interested in Mathematics in Data Science"
7 A1: "Program profile"
8 Q2: "How many ECTS points do I need for Informatics Masters?"
9 A2: "Credits"

10 Q3: "How high is the fee in Life Biology Bachelor?"
11 A3: "Fees for the program"
12 ### Human:
13 How many ECTS points do I need for Mathematics in Data Science?
14 ## Response:

In this phase, we manually apply in-context learning to direct the model towards generating
relevant topics based on the selected study program. This ensures focused and accurate
retrieval of information. Similar to previously we create a vectorstore of all the subsequent
topics of the study program and match the top 5 values that we have found. This is later on
given to the LLM.

5.2.1. Multi Query

The Multi-Query module is utilized to generate variations of the user’s original question,
aiming to explore different formulations that could prompt the LLM to provide a broader
range of topics as context during the Generation Phase. We note that the study program

35

5. Methodology

remains constant; only the user’s question is rephrased. This strategy ensures we can elicit
more detailed or varied information relevant to the same study program without altering its
core focus. Here’s a template for clarity:

1 ### System:
2 Your task is to generate two other different versions of the given user

↪→ question to retrieve relevant documents from a vector database with
↪→ respect to the areas of interest. By generating multiple perspectives on
↪→ the user question, your goal is to help the user overcome some of the
↪→ limitations of the distance-based similarity search. Provide these
↪→ alternative questions numbered from 1. to 2. in newlines.

3 ### Context:
4 The Studyprogram is called ’{studyprogram}’ and the area of interest are ’{

↪→ top_level_keys}’
5 ### Human:
6 How many ECTS points do I need for Mathematics in Data Science?
7 ## Response:

To efficiently refine our question and topic selection, we employ a straightforward method:
after generating questions and topics from the LLM, we use regex to extract each item based
on specific markers (e.g., ’1.’ to the newline for the first item, and similarly for subsequent
items). This process allows us to identify and collect relevant questions and topics directly
from the LLM’s output. For topic refinement, we insert the question into our topic generator,
compare the generated topic with existing ones, and select the five most similar topics to
update our list—using the property of a set to avoid duplicates.

At this juncture, we have pinpointed the study program and relevant topics. Subsequently,
we construct our document database by reading values from the JSON. This pre-retrieval step
ensures our database is focused on selected areas, sidestepping the common issue of retrieving
overlapping information from various study programs. Unlike many RAG frameworks that
commence without pre-filtering, our method concentrates the database on a targeted subset,
setting a foundation for text chunk retrieval from this refined data space. Thus, we’re ready
to embark on the Retrieval Phase, focusing solely on this streamlined subset.

5.3. Retrieval Phase

In the retrieval phase, highlighted in the Background chapter, we explore various modules to
enhance question-answering capabilities within our RAG framework. Specifically, we employ
two distinct retrieval strategies: the Child-Parent Retriever, known in literature as the Parent
Retriever or Small2Big Retriever, and the Ensamble Retriever, often referred to as the Hybrid
Retriever. The Child-Parent Retriever focuses on initially retrieving smaller, more focused
chunks of information, which are then used to guide the retrieval of broader, contextually
rich content. Conversely, the Ensamble Retriever integrates at least two different retrieval
methodologies, allowing for a weighted approach in selecting the most relevant text chunks.

36

5. Methodology

5.3.1. Child Parent Retriever

In the methodology of the Child-Parent Retriever, we distinguish between two types of
vector stores: the "memory store" for child chunks and the "vectorstore" for parent chunks,
each tailored for different granularities of data. The memory store ingests data segmented
into 300-character chunks, while the vectorstore processes larger 1500-character chunks.
All embeddings for these vector stores are generated using the all-MiniLM-L6-v2 model,
ensuring consistency across the embedding process. This choice is driven by a desire to
maintain uniformity in our embedding strategy, mirroring our approach in template usage
where we aim to avoid model-specific prompts influencing the retrieval process outside of
designated areas. This uniform embedding approach facilitates the comparative analysis of
results across different models within our RAG framework.

The challenge is to reconcile the need for small document chunks, which allow for more
accurate embeddings, with the requirement for maintaining sufficient document size to
ensure context is preserved. Each child chunk is assigned a unique ID, and corresponding
parent chunks maintain a list of these IDs. During retrieval, the process identifies a relevant
child chunk in the memory store, retrieves its unique ID, and then locates the parent chunk
containing that ID in its list. This approach ensures that while the embeddings of small
chunks accurately reflect their content, the broader context is not lost, as parent chunks
provide a comprehensive view necessary for subsequent processing steps.

For the retrieval process we first examine each question individually. If the Multi-Query
module is active, generating multiple versions of the same question, we then focus on
identifying the most relevant small chunk from the memory store for each question variation,
based on cosine similarity between the question and potential answers. This step pinpoints
the specific chunks to be utilized as context for our model during the Generation Phase.

The Retrieval Phase also explores an alternative approach through the ensemble retriever,
elaborated further in the subsequent section.

5.3.2. Ensemble Retriever

The Ensemble Retriever integrates two retrieval methods: BM25, which prioritizes documents
based on direct term matches, and cosine similarity, which focuses on the contextual relevance
between texts. This combination offers a versatile approach to document retrieval, balancing
the precision of exact term matching with the depth of semantic understanding.

BM25 BM25 is a retrieval function utilized in information retrieval to rank documents
by their relevance to a query. It operates under the bag-of-words model, disregarding the
sequence and proximity of query terms within documents. The effectiveness of BM25 stems
from its consideration of term frequency and inverse document frequency. Term frequency
refers to the number of times a query term appears in a document, indicating relevance.
Conversely, inverse document frequency assesses the rarity of a term across all documents,
assigning higher value to rarer terms, thereby balancing the relevance of frequently occurring
terms.

The function is calibrated using parameters that adjust its sensitivity to document length

37

5. Methodology

and term frequency, ensuring a fair assessment of documents of varying lengths. BM25’s
methodology focuses on identifying documents that contain query terms not just frequently,
but also those terms that are uncommon across the document corpus, enhancing the retrieval
of pertinent documents. This approach allows BM25 to effectively prioritize documents that
are likely to be more relevant to the query, based on the presence and distribution of terms,
without the influence of their arrangement within the documents. [29]

Cosine Similarity: Contrasting with BM25, cosine similarity measures the cosine of the
angle between two non-zero vectors in a multi-dimensional space, in this case, the vectors
representing the text of the question and documents. This approach evaluates semantic
similarity rather than exact term match, making it advantageous for identifying documents
that are contextually related to the query even if they don’t share specific query terms.

The Ensemble Retriever combines the BM25 retrieval function with cosine similarity,
offering adjustable weighting between the two methods to optimize search outcomes. This
flexibility allows for the tuning of the retriever’s focus: with a lower weight on BM25, cosine
similarity predominates, emphasizing semantic relationships within the vector space. This is
particularly useful for recognizing synonyms and navigating semantically diverse domains.
Conversely, increasing the BM25 weight shifts the focus towards specific, non-common terms,
leveraging the retriever in scenarios where domain-specific language is prevalent, and the
LLM has the capacity to generate highly relevant terms. This adjustment capability makes the
Ensemble Retriever adept at handling larger text segments, where semantic significance might
be obscured by extraneous information, ensuring efficient retrieval by balancing semantic
similarity and term specificity.

Incorporating a weight of 0.5 for BM25 within an ensemble retriever framework can be
clearly described as assigning a moderate level of importance to the BM25 retrieval method
relative to other retrieval methods within the ensemble. This weighting mechanism is
instrumental in harmonizing the retrieval capabilities of the ensemble, ensuring that no single
retriever disproportionately influences the overall ranking of documents. When BM25 is
assigned a weight of 0.5, it indicates that the rankings produced by BM25 are considered
equally alongside the results from other retrievers, under the assumption that other retrievers
are also assigned similar weights.

The weighted Reciprocal Rank Fusion (RRF) method utilized by the ensemble retriever
operates on a straightforward principle: each document’s final score is a sum of reciprocal
ranks from each retriever, adjusted by the retriever’s weight. Specifically, for BM25, the weight
of 0.5 modifies the RRF formula such that the contribution of each rank from BM25’s results
to a document’s overall score is halved. Consequently, the influence of BM25 on the final
document ranking is balanced against that of other retrievers in the ensemble.

Activating the Ensemble Retriever typically sets the BM25 weight in this thesis to 0.5,
achieving an equilibrium between BM25 retrieval and cosine similarity for document ranking.
The primary objective of this thesis is to evaluate the impact of incorporating BM25 into the
RAG framework, seeking any positive influence on retrieval outcomes. Demonstrating a
beneficial effect of BM25 integration lays the groundwork for further enhancements to the
RAG framework outside of this thesis, including fine-tuning the BM25 weighting as a next

38

5. Methodology

step in optimization.
Regardless of whether the Child-Parent-Retriever or the Ensemble Retriever is employed,

at this step in the thesis, we have retrieved the relevant data. This completion of the retrieval
stage allows us to proceed to the next phase: Generation

5.4. Generation Phase

In the Generation Phase of our RAG framework, we directly leverage the data retrieved in
the preceding steps without subjecting it to further post-retrieval processing. Integrating
additional post-retrieval processing could have significantly increased the complexity of our
experiments, necessitating a doubling of iterations and, consequently, a substantial increase
in the number of runs required for comprehensive analysis. This section, therefore, centers
predominantly on the aspect of In-Context-Learning, examining how the RAG framework
utilizes the unaltered retrieved data chunks to generate responses that are contextually
relevant and informed by the input query and the associated retrieved information.

In the case of the not enabling the In-Context-Learning module we use the following
template:

1 ### System:
2 Answer the question in one to maximally two sentences based only on the

↪→ following context. Keep it short.
3 ### Context:
4 \"{context}\"
5 ### Human:
6 How many ECTS points do I need for Mathematics in Data Science?
7 ## Response:

Here the context variable is filled up with the text chunks that we have retrieved during
the Retrieval Phase.

5.4.1. In-Context-Learning

This phase begins after the retrieval of data chunks, a process thoroughly examined in the
Background chapter, where it was decided to refrain from altering the retrieved data to
maintain focus on the core components of the RAG framework. Opting not to implement
additional post-retrieval processing was strategic, aiming to avoid the potential doubling of
iterations and the subsequent need for increased computational runs. The crux of this chapter,
therefore, is to explore the efficacy of In-Context Learning, particularly through a three-shot
approach.

The literature on In-Context Learning differentiates among one-shot, two-shot, and five-
shot approaches, each offering varying degrees of learning complexity and adaptability.
Similar to adjustments in the BM25 weighting, our primary goal is to get whether a significant
improvement in response generation can be observed with a three-shot approach, independent
of the number of examples we parse in the context as learning. This would potentially justify

39

5. Methodology

further exploration into varying the lengths of In-Context Learning. A considerable challenge
was selecting three Question-Answer pairs that exhibit a broad semantic diversity to prevent
model bias towards the domains of the examples provided. Such bias could impair the
model’s performance on user queries from unrelated domains. In the forthcoming sections,
we will detail the template used for this In-Context Learning approach, emphasizing its
design to maximize the model’s ability to generate contextually rich and accurate responses
across diverse query domains.

1 System:
2 Answer the question in one to maximally two sentences based only on the

↪→ following context. Keep it short.
3 ### Context:
4 \"{context}\"
5 ### Few-shot-example:
6 Q1: How do I apply for the Master’s program in Management at TUM if I have an

↪→ undergraduate degree from outside the EU/EEA?
7 A1: You must apply through the TUMonline portal and provide Preliminary

↪→ Documentation (VPD), with your documents pre-evaluated through uni-
↪→ assist for the Management program.

8 Q2: Where are the main locations for the Teaching at Academic Secondary Schools
↪→ â Scientific Education Master of Education (M.Ed.) program offered by
↪→ TUM?

9 A2: The main locations for this program are Munich, Garching, and Weihenstephan
↪→ (Freising).

10 Q3: What types of specialized modules and hands-on experiences can students
↪→ expect in the Biology Master of Science (M.Sc.) program at TUM?

11 A3: Students can engage in a variety of modules like mammalian cell culture,
↪→ plant physiology, ecological microbiology, and oncology, along with
↪→ research internships offering 1:1 supervision, focusing on current
↪→ research tools in small or very small groups.

12 ### Human:
13 How many ECTS points do I need for Mathematics in Data Science?
14 ### Response:

5.4.2. Parsing Meta-Data

For every inference step within our RAG framework, multiple layers of information were
incorporated to facilitate a deeper analysis and understanding of the framework’s operations.
This enriched dataset enables a granular inside view of the RAG framework, beginning with
the identification of specific study programs and topics (also referred to as sections) parsed
during the filtering step into the retrieval process. Additionally, this approach allows for an
examination of the context seen by the LLM during the Generation Phase, offering insights into
the data the LLM was exposed to and how it influenced the response generation. To further

40

5. Methodology

assess and categorize the outputs, each includes a depiction of the module state—indicating
whether specific modules were enabled or disabled. This data provides a clear view of how
the internal mechanisms collectively contributed to constructing the entire pipeline.

Moreover, the inclusion of the duration metric for each inference step offers an understand-
ing of the time efficiency of different processes within the framework. Most open-source
model inferences were performed using either an Nvidia Tesla V100 or Nvidia Tesla A100
GPU on Google Colab, with a preference for the Tesla A100, although resource availability
sometimes necessitated the use of the Tesla V100. Conversely, all closed-source models were
run through their respective APIs, utilizing a 100 MB WiFi connection, delineating a distinct
operational environment for these models.

To get a better understand, here is the result of one inference step, using Llama 13B on our
english dataset:

1 {"95": {
2 "question": "What are the tuition fees for international students from

↪→ third countries in the Mathematics in Data Science Master of Science (M.
↪→ Sc.) program?",

3 "answer": "The tuition fees for international students from third
↪→ countries in the Mathematics in Data Science Master of Science (M.Sc.)
↪→ program at TUM are 6,000 EUR per semester.",

4 "true_answer": "The tuition fees for international students from third
↪→ countries for this degree program are 6,000 euros per semester.",

5 "studyprogram": "Mathematics in Data Science Master of Science (M.Sc.)"
↪→ ,

6 "true_studyprogram": "Mathematics in Data Science Master of Science (M.
↪→ Sc.)",

7 "section": [
8 "Tuition Waivers Scholarships",
9 "Tuition fees",

10 "Exams, studying abroad",
11 "Study Program Requirements",
12 "Mathematics, Data Science"
13],
14 "true_section": "Tuition Waivers Scholarships",
15 "source": "The tuition fees for international students from third

↪→ countries for this degree program are 6,000 euros per semester. Many
↪→ international students can have their fees waived or receive
↪→ scholarships to finance them. You can find all information on waivers
↪→ and scholarships here. Please note: The semester fee as a contribution
↪→ to the student union must be paid additionally. It varies depending on
↪→ where you are studying. You can find all information on the semester fee
↪→ here.\nStudent Fees: 85.00 EUR, Tuition fees for international students
↪→ \nTUM Center for Study and Teaching Email:studium@tum.de\nhttps://www.ma.

41

5. Methodology

↪→ tum.de/de/studium/studiengaenge-mathematik/master-mathematics-in-data-
↪→ science.html\nThe tuition fees for international students from third
↪→ countries for this degree program are 6,000 euros per semester. Many
↪→ international students can have their fees waived or receive
↪→ scholarships to finance them. You can find all information on waivers
↪→ and scholarships here. Please note: The semester fee as a contribution
↪→ to the student union must be paid additionally. It varies depending on
↪→ where you are studying. You can find all information on the semester fee
↪→ here.\nStudent Fees: 85.00 EUR, Tuition fees for international students
↪→ \nTUM Center for Study and Teaching Email:studium@tum.de\nhttps://www.ma.
↪→ tum.de/de/studium/studiengaenge-mathematik/master-mathematics-in-data-
↪→ science.html\n",

16 "true_source": "The tuition fees for international students from third
↪→ countries for this degree program are 6,000 euros per semester. Many
↪→ international students can have their fees waived or receive
↪→ scholarships to finance them. You can find all information on waivers
↪→ and scholarships here. Please note: The semester fee as a contribution
↪→ to the student union must be paid additionally. It varies depending on
↪→ where you are studying. You can find all information on the semester fee
↪→ here.",

17 "queries": [
18 "1. What are the total costs, including tuition fees and other

↪→ expenses, for international students from third countries enrolled in
↪→ the Mathematics in Data Science Master of Science (M.Sc.) program?",

19 "2. How do the tuition fees for international students from third
↪→ countries in the Mathematics in Data Science Master of Science (M.Sc.)
↪→ program compare to those of domestic students or students from other
↪→ countries?"

20],
21 "language": "en",
22 "query_duration": 14.749154806137085,
23 "child_parent_retriever": false,
24 "multi_query": true,
25 "bm25_retriever_weight": 0.5,
26 "in_context_learning": true
27 }
28 }

Listing 5.1: JSON snippet for Llama 13B inference step

42

5. Methodology

5.5. User Interface

In our exploration of optimizing the RAG framework, a Streamlit user interface has been
integrated to facilitate interactive demonstrations and evaluations. Streamlit is an open-source
app framework designed for machine learning and data science teams, enabling the rapid
creation of custom web apps for data analysis, machine learning, and AI-driven projects. Its
simplicity and efficiency make it an excellent tool for showcasing models and frameworks
like ours, allowing users to interact with the technology directly without navigating complex
programming environments.

The Streamlit app developed for our RAG framework offers flexibility in deployment,
capable of running either online for broader accessibility or locally on a device for more
controlled, personal use. We differentiate between two configurations for initializing the app:
one for leveraging open-source models and another for utilizing closed-source models. In the
case of running the app locally with closed-source models, the process is straightforward. We
begin by specifying the module iteration and the language, which dictates the dataset to be
used. Once initialized, the app operates similarly to a chatbot, ready for interaction.

Conversely, to run the app locally with an open-source model, an additional step is required:
initiating the server (in our case this is Ollama) that hosts the LLMs. This server is directly
linked to our repository, ensuring seamless integration and operation of the models within
the Streamlit app. After launching the server, the subsequent steps mirror those of the
closed-source configuration. During initialization, the user selects the module iteration and
language, prompting the user interface to activate and become ready for interactive sessions.

5.6. Evaluation

5.6.1. RAG Confusion Matrix

The advent of RAG systems has introduced complex dynamics in NLP tasks, necessitating
refined evaluation techniques. Building on this need, the RAG Confusion Matrix emerges
as a novel evaluation framework that synergizes existing evaluation metrics that we saw
in the Background Chapter with the unique structural properties of RAG systems. This
innovative approach is designed to offer a comprehensive assessment strategy, capturing the
multifaceted performance aspects of RAG models in handling real-world tasks.

This chapter will first outline the foundational concept behind combining traditional evalua-
tion metrics with the distinct characteristics of RAG systems to formulate the RAG Confusion
Matrix. This novel evaluation paradigm is structured to address the intricate challenges posed
by RAG systems, especially in terms of accurately sourcing relevant information (context) and
synthesizing this information into an accurate, coherent, and contextually relevant Predicted
Answer. Through this comprehensive evaluation framework, we endeavor to illuminate the
strengths and pinpoint areas for improvement within RAG systems, thereby contributing to
the advancement of NLP technologies and their applications.

The traditional Confusion Matrix is a fundamental tool in machine learning for evaluating
the performance of classification models. It provides a visual and quantitative representation

43

5. Methodology

of the true and predicted classifications, divided into four categories: True Positives (TP),
True Negatives (TN), False Positives (FP), and False Negatives (FN). This matrix allows for a
nuanced analysis of a model’s accuracy by not only highlighting correct predictions but also
categorizing errors, offering insights into the model’s precision and recall.

In the context of RAG systems, the Confusion Matrix concept is adapted to assess both the
retrieval and generation phases of these models. This adaptation recognizes the unique oper-
ational dynamics of RAG systems, which involve sourcing contextually relevant information
before generating a response. Thus, the RAG Confusion Matrix evaluates:

1. True Positive (TP): The model’s success in accurately retrieving relevant information
and generating a response that aligns with the reference output, indicating the RAG
system’s effectiveness in both identifying the correct source and utilizing it to answer
the query accurately.

2. True Negative (TN): Occurs when the RAG model identifies an incorrect source and
produces an irrelevant or incorrect response. This reflects a correct understanding that
the question and the provided source do not align, leading to a deliberate negative
outcome.

3. False Positive (FP): Arises when the RAG system mistakenly assesses an irrelevant
source as accurate but still produces a response that seems correct or is aligned with
the reference output, showcasing a discrepancy between source relevance and response
accuracy.

4. False Negative (FN): Happens when the RAG system overlooks a correct and relevant
source, leading to an inaccurate or irrelevant response where a precise answer was
possible, highlighting a missed opportunity for accurate retrieval and generation.

By adapting the traditional Confusion Matrix to the RAG framework, this approach
provides a comprehensive method to dissect the complex process of information retrieval and
response generation inherent in RAG systems. This novel RAG Confusion Matrix not only
captures the accuracy of the final generated responses but also delves into the intricacies of
how effectively RAG models source and utilize information to craft these responses.

To better understand how our RAG framework performs, we examine an example of
evaluated inference steps. In our evaluation table, there’s a "Match" column that shows if
we correctly captured the intended topic for the Generation Phase, based on the Meta Data.
Other columns include Relevance Score, Coherence Score, Fluency Score, and Faithfulness
Score, with scores ranging from 1 (lowest) to 5 (highest), as previously discussed.

Our focus here is on the Relevance Score because it tells us how closely the answer from
the LLM matches the true answer, indicating the accuracy of the generated response. When
we refer in the following to the RAG Confusion Matrix, then we implicitly use the Relevance
Score column; only when we also indicate one of the other three columns, then we delineate
from the default choice. By concentrating on this score, we can assess the framework’s ability
to provide relevant answers. Next, we will look at an example to see RAG Confusion Matrix

44

5. Methodology

Table 5.1.: Model Evaluation Summary

Match Question True Answer Predicted
Answer

Rel. Coh. Flu. Faith.

1 Question 1 True Answer 1 Answer 1 5 5 5 5
1 Question 2 True Answer 2 Answer 2 3 4 4 2
1 Question 3 True Answer 3 Answer 3 5 5 5 4

(Entries 4-10 omitted)

0 Question 11 True Answer 11 Answer 11 1 1 5 1
0 Question 12 True Answer 12 Answer 12 3 1 3 2
0 Question 13 True Answer 13 Answer 13 5 5 5 2

(Entries 14-20 omitted)

in terms of relevance, giving us a clear picture of its performance in generating accurate and
pertinent responses.

Table 5.2.: RAG Confusion Matrix, Metric: Relevance, Threshold: 5

Correct Incorrect

Match 7 3
No Match 4 6

This matrix demonstrates the distribution of correct and incorrect predicted answers, catego-
rized by whether there is a match or no match with the source.

When developing the concept of a RAG Confusion Matrix, we made several deliberate
decisions to shape our evaluation process. One key choice was how we generated scores for
Relevance, Coherence, Fluency, and Faithfulness. We approached this using two judges: one
being GPT 4 and the other, human evaluation. To ensure objectivity, GPT 4 evaluations were
conducted in a new session to prevent any self-influence on its outputs. Human evaluations
were carried out by four individuals, focusing on specific model runs selected for this purpose.

Another significant consideration was the volume of samples subjected to evaluation. As
discussed our study encompassed 96 different RAG iterations, each tested with 200 questions.
Directly applying GPT 4 evaluation across all samples for each of the four scoring categories
would have required 76.800 API calls—a demand too high in terms of both time and financial
resources. To manage this, we devised a script to randomly select 10 matches and 10 non-
matches from each run, thereby constructing a concise Evaluation Summary. In cases where a
run did not yield 10 matches, the number of non-matches was similarly limited, ensuring a
balanced and manageable evaluation dataset.

The evaluation results played a crucial role in further refining our RAG framework, as they

45

5. Methodology

provided concrete data on our model’s performance. In the following chapter, we will explore
the specific adjustments made to enhance the RAG system. Despite these optimizations, we
were unable to conduct human evaluations on the improved versions directly. Therefore, we
selected three specific model iterations and optimized the RAG framework even more that
showed superior performance in Hit Rate compared to others, including both open-source
and closed-source models. For these, we generated a total of 60 inference entries, evenly
split between 30 matches and 30 non-matches. This set of inferences was subjected to human
evaluation, and the findings from this assessment will be discussed in detail in the next
chapter.

46

6. Evaluation Results

In this chapter, we’ll tackle the main research question introduced at the start: how do specific
modules influence the performance of our RAG framework? Our focus will be on evaluating
the roles of Multi-Query, Child-Parent Retriever, Ensemble Retriever, and In-Context Learning.
We’ll also compare how open-source models perform against closed-source models within
our framework.

To make sure we’re all on the same page, we’ll quickly review how our RAG system
operates. We began by collecting data from TUM study programs, organized this information
into JSON files, and then generated questions from this data to test the framework’s ability to
retrieve relevant information and provide accurate answers.

Our analysis involved 96 different runs, using a variety of LLMs, across both German and
English study program data. After collecting all this data, we applied several evaluation
metrics to a subset of inferences from each run, including some metrics we developed
specifically for this thesis.

Following this analysis, we’ll discuss how we optimized the RAG framework based on
our findings and what changes resulted from these optimizations. This examination not
only addresses our initial research question but also opens up avenues for future work
in improving RAG systems. Through this detailed exploration, we aim to shed light on
the effective components of RAG frameworks and the adjustments that can enhance their
performance.

6.1. Retrieval Quality

In this section, we focus on assessing the Retrieval Quality of our model, which essentially
measures how effectively the model can pull relevant textual information from our dataset.
Thanks to our structured dataset, we have a clear advantage in determining whether the
correct data was retrieved or if we managed to "hit" the targeted information. As previously
mentioned in the Background chapter, there are several methods to evaluate the retrieval
effectiveness, including examining how meaningfully the data is ordered and how significantly
different data chunks contribute to answering a given question. We will now primarily focus
on the Hit Rate as our main metric of interest.

Our framework it broken down into different parts, like building blocks, each handling
a phase of the process. This approach lets us identify which parts can be fine-tuned to
improve how well our system finds and retrieves the right information, aiming to enhance
our Retrieval Quality.

Here’s a look at the parts that impact our ability to accurately find information, directly or

47

6. Evaluation Results

indirectly:

1. We started with gathering a lot of disorganized data from many websites, then organized
this data into one big JSON file.

2. Even though we tried to make sure the topics for each study program were well-defined
to help with filtering, sometimes the information within a topic is too broad or complex
to be neatly summed up in a few words that we call as topic.

3. As we have seen when it comes to turning a question into a search for specific informa-
tion, we use two prompts that help guide the search towards the right study programs
and topics.

Understanding these parts helps us see where adjustments can be made to get better at
finding the right information, thus boosting our system’s effectiveness.

6.1.1. Hit Rate

Considering everything we talked so far we present the Hit Rate Table. This table will be
analysed in the following.

Table 6.1.: Hit Rate over all possible RAG frameworks

Model #P er cpr icl
icl- mq- mq- mq-

mq-

er er cpr cpr-icl
icl-
er

Llama 2 7B
de 8.64 8.64 8.64 7.41 13.58 13.58 13.58 13.58
en 43.21 43.21 43.21 43.21 53.09 53.09 53.09 53.09

Llama 2 13B
de 28.40 28.40 28.40 28.40 34.57 34.57 34.57 34.57
en 50.62 50.62 50.62 50.62 55.56 55.56 55.56 55.56

GPT 3.5
de 56.79 56.79 58.02 55.56 66.67 64.20 70.37 65.43
en 44.44 41.98 41.98 43.21 46.91 44.44 45.68 45.68

GPT 4
de 61.73 61.73 61.73 61.73 69.14 66.67 65.43 66.67
en 65.43 66.67 66.67 66.67 75.31 72.84 72.84 72.84

Mistral 7B
de 39.51 39.51 39.51 39.51 48.15 51.85 51.85 49.38
en 51.85 51.85 53.09 51.85 56.79 56.79 56.79 56.79

Orca Mini 7B en 44.44 44.44 44.44 44.44 50.62 49.38 51.85 51.85
Vicuna 7B en 1.23 1.23 1.23 1.23 3.70 3.70 3.70 6.17

er = Ensemble Retriever, cpr = Child-Parent-Retriever, icl = In-Context-Learning, mq = Multi-Query.

In our findings, we’ve adopted a top-down approach to evaluation, starting from a broad
perspective and gradually focusing on the performance of specific module iterations. Two
main observations emerge from this analysis. Firstly, it’s clear that any module iteration
excluding the Multi-Query feature performs significantly worse than those that incorporate it,

48

6. Evaluation Results

highlighting the critical role of Multi-Query in enhancing retrieval effectiveness. Secondly,
while open-source and closed-source LLMs generally show consistent performance within
their categories—regardless of whether Multi-Query is used or not—the performance across
closed-source models varies notably for identical runs. This outcome is particularly unex-
pected since the temperature setting for all runs was maintained at zero, suggesting that
factors beyond temperature control are influencing the performance disparities observed in
closed-source models.

• For the Llama 2 model with 7 billion parameters, comparing results from both German
and English datasets shows clear patterns. The model performs the same across ER,
CPR, and ICL strategies in each language—8.64% for German and 43.21% for English.
This shows the model’s consistent approach regardless of the retrieval method but
also highlights its better understanding of English, likely due to more training in this
language. When we add the Multi-Query (mq) technique, performance jumps to 13.58%
for German and 53.09% for English. This improvement shows that using different ways
to ask a question helps the model find and use more relevant information, especially in
English.

• For the Llama 2 model with 13 billion parameters, analyzing both the German and
English datasets shows that performance increases in comparison to the 7 billion
parameter model. Both languages exhibit identical performance across ER, CPR, and
ICL strategies at 28.40% for German and 50.62% for English. This indicates improved
capabilities due to the larger model size, especially in English where the model is
already more adept. Introducing Multi-Query techniques further boosts performance
to 34.57% for German and 55.56% for English. These enhancements, similar to the 7
billion parameter model, confirm the effectiveness of mq in expanding the model’s
retrieval and response accuracy. The performance jump with the 13 billion parameter
model, compared to the 7 billion parameter version, suggests that increased model size
enhances the benefits of mq techniques, particularly in English, reflecting the model’s
stronger base in this language.

• Moving to the GPT 3.5 model, the results for both German and English datasets
provide insights into its performance relative to the Llama 2 model. For German, the
performance stands at 56.79% with ER, CPR, and 58.02% with ICL, showing a notable
increase in effectiveness compared to both configurations of the Llama 2 model. The
English dataset shows a base performance of 44.44% with ER, 41.98% with CPR, and an
identical 41.98% with ICL, indicating a slightly different trend where the model does
not significantly outperform the Llama 2’s 7B and 13B configurations in English. The
introduction of Multi-Query techniques enhances the GPT 3.5 model’s performance
to 66.67% for German and up to 46.91% for English. This enhancement is particularly
striking in the German dataset, suggesting that GPT 3.5 is exceptionally responsive
to mq techniques in this language, outperforming the Llama 2 model’s mq-enhanced
configurations significantly. In English, while the improvement is present, it aligns more
closely with the increments seen in Llama 2, indicating a consistent benefit from mq

49

6. Evaluation Results

across models but with language-specific efficacy. These findings suggest that while
the GPT 3.5 model shows a pronounced improvement in handling German queries,
particularly with mq enhancements, its advantage in English is less pronounced when
compared to the Llama 2 model’s performance.

• For the GPT 4 model, the consolidated performance data across the German and English
datasets demonstrates significant advancements over both the Llama 2 and GPT 3.5
models. The performance metrics indicate a uniform rate across ER, CPR, and ICL
strategies, with 61.73% for German and an impressive 66.67% for English, showcasing
GPT 4’s superior understanding and processing capabilities in both languages. The
uniformity across different strategies highlights the model’s robustness and its ability to
maintain high performance regardless of the retrieval or learning method applied. With
the implementation of Multi-Query techniques, GPT 4’s performance further escalates
to 69.14% for German and reaches 75.31% for English. This substantial enhancement
underscores the significant impact of mq techniques on GPT 4, particularly in English,
where the model achieves the highest performance increment observed among the
discussed models. The mq technique’s ability to amplify GPT 4’s performance beyond
its base capabilities suggests a highly effective synergy between the model’s architecture
and advanced query reformulation strategies. Comparatively, GPT 4 demonstrates a
remarkable capacity for leveraging mq enhancements to outperform previous models
in both German and English, with the greatest relative gain observed in English. Com-
paratively, GPT 4 demonstrates a remarkable capacity for leveraging mq enhancements
to outperform previous models in both German and English, with the greatest relative
gain observed in English.

• The Mistral model, equipped with 7 billion parameters, presents a distinct performance
profile when evaluated across the German and English datasets. In both languages, the
model’s performance with the base strategies of ER, CPR, and ICL is consistent—39.51%
for German and slightly higher at 51.85% to 53.09% for English. This performance is
indicative of Mistral’s competent handling of both languages, with a notably better
baseline in English, aligning with the observed trend of models generally performing
better in English. Upon the application of Multi-Query techniques, Mistral’s perfor-
mance improves to 48.15% for German and to 56.79% for English. These improvements
demonstrate the beneficial impact of mq strategies on Mistral’s ability to process and
respond to queries more effectively, enhancing its retrieval and generation capabili-
ties. The increase is significant yet somewhat less pronounced when compared to the
GPT 4 model’s leap in performance with mq techniques, suggesting differences in
how each model architecture capitalizes on the expanded retrieval scope provided by
mq. Mistral’s performance, while robust, suggests that it offers a balance between the
capabilities seen in earlier models like Llama 2 and the more advanced GPT 4, with its
responsiveness to mq techniques indicating a solid, though not unparalleled, ability to
leverage advanced query reformulations.

• Orca Mini and Vicuna, both with 7 billion parameters and operating on the English

50

6. Evaluation Results

dataset, show contrasting responses to retrieval strategies and Multi-Query enhance-
ments. Orca Mini delivers a steady performance of 44.44% across all base strategies,
with mq techniques nudging its effectiveness up to between 49.38% and 51.85%. This
indicates a moderate but clear benefit from the mq approach. Vicuna, however, starts
from a much lower baseline of 1.23% and sees only slight improvements with mq,
reaching up to 6.17%. This minimal increase suggests significant challenges in utilizing
mq enhancements effectively, hinting at potential limitations in Vicuna’s design or
training that mq strategies cannot overcome.

Hit Rate Summary In evaluating the performance of different LLMs with a focus on en-
hancing module configurations, GPT 4, when equipped with the Multi-Query enhancement
in the English dataset (mq-icl-er configuration), emerges as the standout performer among
closed-source models. On the open-source front, Llama 2 with 13 billion parameters and
Mistral with 7 billion parameters, both utilizing the mq enhancement in the English dataset
(mq-icl-er configuration), present themselves as formidable contenders. While their perfor-
mance metrics are commendable, the Hit Rate for Llama 2 stands at 55.56%, and for Mistral, it
is 56.79%, both significant improvements that underscore the effectiveness of the mq approach
in enhancing model responsiveness and accuracy.

In the refined analysis with correct figures, the Vicuna model, despite its innovative ap-
proach of being fine-tuned on user-shared conversations via ShareGPT, remains the poorest
performer. Its performance underscores the challenge that even advanced fine-tuning tech-
niques may not suffice to overcome inherent limitations within certain model architectures or
training datasets.

Furthermore, the recalculated data highlight a universal trend of all models performing
better on the English dataset. This observation is consistent with the initial analysis, reinforc-
ing the notion of a linguistic bias or a stronger training foundation in English within these
models.

The introduction of mq techniques brings to light an interesting dynamic in performance
enhancement. For the English dataset, the average performance increase stands at approxi-
mately 5.82%, while for the German dataset, it is slightly higher at around 6.67%. This overall
average performance increase of about 6.17% when switching from strategies without mq
("icl") to those with mq ("mq-icl-er") across languages highlights the effectiveness of mq in im-
proving model performance. Notably, the slightly higher improvement in the German dataset
suggests that mq techniques might be particularly beneficial in addressing or mitigating
challenges associated with language complexity or dataset limitations.

6.2. Generation Quality

In this chapter, we’re looking at how well our models generate answers, but we’re doing
something a bit different. Usually, methods like Child-Parent-Retriever (cpr) and Ensemble
Retriever (er) are used in the first step of finding information (retrieval phase). But here,
we’ve decided to include them in the generation phase, where the model creates answers.

51

6. Evaluation Results

We made this choice because our dataset is quite specific, and we wanted to excatly check
how accurately the model can pick out the right study program and topics for more detailed
answers. This is a bit unusual, as these methods are normally included during the Retrieval
Phase and are therefore subject to calculating the Hit Rate. Because of our dataset’s unique
needs, we’re mixing these retrieval methods with In-Context-Learning in the part where we
evaluate how good the generated answers are.

To evaluate the quality of the answers generated, we use two main tools: the RAG Confusion
Matrix and the Average RAG Evaluation. The RAG Confusion Matrix helps us see how often
the model sticks to the topic and gives high-quality answers. The Average RAG Evaluation
looks at the model’s performance more broadly, not just at the best answers but at how well
it does on average. Together, these methods help us measure how well the model combines
retrieving and generating information to answer questions.

6.2.1. RAG Confusion Matrix

As we delve into the evaluation of our model’s performance, the example table 5.1 from the
Methodology chapter becomes crucial. We have a total of 96 such tables, and for each, we
apply the RAG Confusion Matrix methodology discussed earlier. An essential part of this
process involves focusing on specific metrics to assess the quality of the generated answers.
These metrics are:

• Relevance: This measures the degree to which the generated answer matches the
content in the reference answer. An ideal answer is one that covers all relevant points
without including extraneous information. It’s rated on a scale from 1 to 5, with 1
indicating poor relevance and 5 indicating perfect relevance.

• Coherence: This evaluates how well the generated answer flows. It should be structured
and organized, presenting information in a logical sequence rather than as a disjointed
collection of facts. Coherence is also rated from 1 to 5, based on the clarity and
organization of the answer.

• Fluency: This metric assesses the grammatical, spelling, punctuation, word choice,
and sentence structure quality of the generated answer. Scores range from 1 (poor
fluency) to 5 (excellent fluency), with higher scores indicating fewer errors and smoother
readability.

• Faithfulness: This evaluates the factual accuracy of the generated answer in comparison
to the reference answer. It checks for the presence of incorrect or "hallucinated" facts
that aren’t supported by the reference. Like the other metrics, faithfulness is scored
from 1 to 5, where 1 indicates a lack of factual alignment and 5 indicates complete
factual accuracy.

To keep our analysis practical and cost-effective, we included a sample of 20 answers, half
with matches to the reference answers and half without. For the GPT 4 model, we asked

52

6. Evaluation Results

for scores between 1 and 5 to gauge answer quality, setting a high standard for inclusion
in our analysis. Only responses scoring a perfect 5 were considered, ensuring we focused
on the highest quality, most relevant answers. This decision helps us maintain a rigorous
standard of evaluation, consistent with the demands of a thesis, and allows us to pinpoint the
most effective aspects of the RAG framework in generating relevant answers as seen in the
following table 6.2

Table 6.2.: Metric: Relevance, Threshold: 5; Top 3 TP: Correct Match & Correct Response

Llama2 7B (en-mq-er) Mistral 7B (en-mq-er) Mistral 7B (de-icl-er)
Match Correct Incorrect Correct Incorrect Correct Incorrect

1 9(TP) 1(FN) 9(TP) 1(FN) 9(TP) 1(FN)

0 2(FP) 8(TN) 5(FP) 5(TN) 4(FP) 6(TN)

The table presented, with a focus on the metric of Relevance and a threshold of 5, highlights
the performance of open-source models Llama2 7B and Mistral 7B in both English and
German configurations under the conditions of correct context matching and high-quality
responses as evaluated by GPT 4. A notable finding across these evaluations is the consistent
achievement of 9 correct answers (True Positives) for each model configuration regarding
relevance, underlining the effectiveness of these models in processing relevant content when
given the correct context.

An important consideration in interpreting these results is the methodology behind the
evaluation. Specifically, the analysis was conducted on a set of 20 question-answer pairs for
each model configuration, with a mix of matches and no matches to the reference answers.
This approach inherently introduces variability, as the selection of question-answer pairs
was random for each model run, potentially affecting the comparability of results across
different runs. The sample size of 20, while practical for managing API calls and costs, may
not fully represent the models’ capabilities. Thus, there’s an inherent challenge in drawing
broad conclusions about model performance due to the possibility that some runs might have
encountered either more straightforward or more complex questions than others.

Table 6.3.: Metric: Faithfulness, Threshold: 5

Llama2 7B (en-mq-er) Mistral 7B (en-mq-er) Mistral 7B (de-icl-er)
Match Correct Incorrect Correct Incorrect Correct Incorrect

1 8(TP) 2(FN) 9(TP) 1(FN) 8(TP) 2(FN)

0 2(FP) 8(TN) 5(FP) 5(TN) 4(FP) 6(TN)

53

6. Evaluation Results

While relevance provides a critical view of how well the model’s answers align with
the expected content, examining only this metric doesn’t paint the full picture of answer
quality. To thoroughly assess the accuracy of the top 3 models and ensure they don’t fabricate
information, we turn to the faithfulness metric. Upon reviewing the faithfulness scores, we
notice a distinct pattern, that two of our models performed worse in the metric faithfulness,
then in relevance. Although its responses were relevant, meaning they related to the posed
question and aimed towards the correct answer, they diverged from the desired True Answer,
introducing unfounded elements or "hallucinations."

It’s important to remember that when we score answers for things like how relevant or
faithful they are, we’re only looking at the question, the correct answer, and the predicted
answer. We’re not considering what context the model was looking at when it created the
predicted answer. So, if a model gives a lot of details and goes beyond the exact answer
needed, it might get a lower score for faithfulness. This is because the scoring system might
see the extra details as mistakes, even if the model was just trying to give more information.

Observing the metrics, it’s clear that Faithfulness carries slightly more weight than Rele-
vance. This distinction makes sense intuitively: for an answer to be considered faithful, it
must inherently be relevant to the question. However, the reverse isn’t always true; an answer
can be relevant—meaning it pertains to the topic at hand—without necessarily being faithful,
which requires the answer to not only be on topic but also factually accurate and free of
fabricated information. Given this nuanced relationship between the two metrics, our next
step will be to delve deeper into the models that exhibit the highest levels of faithfulness,
exploring how this attribute enhances the overall quality of the generated responses.

Table 6.4.: Metric: Faithfulness, Threshold: 5; Top 3 TP: Correct Match & Correct Response

ChatGPT4 (en-mq-er) Llama2 7B (en-er) Mistral 7B (en-mq-er)
Match Correct Incorrect Correct Incorrect Correct Incorrect

1 10(TP) 0(FN) 9(TP) 1(FN) 9(TP) 1(FN)

0 5(FP) 5(TN) 4(FP) 6(TN) 5(FP) 5(TN)

When we focus on the top three models that achieved a perfect score of 5 in Faithfulness
in table 6.4, we observe a shift in the leading RAG frameworks compared to those excelling
in Relevance. It’s crucial to understand that the terms "Correct" and "Incorrect" in the
RAG Confusion Matrices signify different things across metrics. For Relevance, "Correct"
implies that the model’s response was appropriately related to the question, showcasing its
ability to generate pertinent information. However, when applied to Faithfulness, "Correct"
carries a more substantial implication. It indicates that the model not only matched the
expected answer but also accurately adhered to the factual content without introducing any
unwarranted or fabricated details. This distinction highlights the nuanced criteria used to

54

6. Evaluation Results

evaluate model performance across different metrics, emphasizing the higher standard of
accuracy and reliability set by the Faithfulness metric.

When analyzing the top 3 tables that achieved a perfect faithfulness score of 5, an interesting
observation emerges regarding False Positive (FP) values. These FPs represent instances
where the RAG framework might have included irrelevant information in its responses.
Despite this, the models were able to produce answers that remained true to the expected
answers, indicating a sophisticated understanding of the question and context. This outcome
suggests two key points: first, the models could discern that the question didn’t directly relate
to the provided context, and second, they managed to generate faithful answers based on
their training, rather than introducing hallucinated content.

This finding points to an area for potential improvement: models should prioritize context
over their pre-existing knowledge or "model weights" to enhance answer accuracy. A critical
realization, however, is that our evaluation approach may have inadvertently penalized correct
behaviors. For example, in cases of "No Matches" where the context doesn’t support an
answer, the ideal response from a model would indicate the lack of relevant information
rather than attempting to generate a forced answer. Our current methodology, which extends
the same faithfulness scoring approach to such scenarios, fails to adequately reward responses
that accurately acknowledge the absence of contextually supported answers. This oversight
highlights the importance of refining our evaluation templates to better recognize and
reward model responses that accurately reflect the available context, especially in "No Match"
situations.

To better understand how the top three RAG frameworks from table 6.4 perform, we should
also look at their scores in the other three metrics beyond faithfulness. This way, we get a
full picture of each model’s abilities, including how relevant, coherent, and fluently they can
answer questions, alongside their accuracy. By checking all these aspects, we can see which
models do the best overall at generating good answers.

Table 6.5.: Metric: Relevance, Threshold: 5

ChatGPT4 (en-mq-er) Llama2 7B (en-er) Mistral 7B (en-mq-er)
Match Correct Incorrect Correct Incorrect Correct Incorrect

1 7(TP) 3(FN) 7(TP) 3(FN) 9(TP) 1(FN)

0 4(FP) 6(TN) 4(FP) 6(TN) 5(FP) 5(TN)

55

6. Evaluation Results

Table 6.6.: Metric: Coherence, Threshold: 5

ChatGPT4 (en-mq-er) Llama2 7B (en-er) Mistral 7B (en-mq-er)
Match Correct Incorrect Correct Incorrect Correct Incorrect

1 10(TP) 0(FN) 8(TP) 2(FN) 9(TP) 1(FN)

0 3(FP) 7(TN) 5(FP) 5(TN) 3(FP) 7(TN)

Table 6.7.: Metric: Fluency, Threshold: 5

ChatGPT4 (en-mq-er) Llama2 7B (en-er) Mistral 7B (en-mq-er)
Match Correct Incorrect Correct Incorrect Correct Incorrect

1 10(TP) 0(FN) 8(TP) 2(FN) 10(TP) 0(FN)

0 7(FP) 3(TN) 9(FP) 1(TN) 6(FP) 4(TN)

When we look at how well the models did on Relevance, Coherence, and Fluency, two main
points stand out. First, while the models scored high for Faithfulness, showing they could
stick closely to the true answer, some, like ChatGPT4 (en-mq-er) and Llama2 7B (en-er), lost
slightly on Relevance. This was because they gave more information than what was asked,
getting penalized for adding unnecessary details.

Second, all the models did well on Coherence and Fluency, showing they can create answers
that sound good and make sense. However, this brings up a challenge for evaluating large
language models. Just because an answer is smooth and logical doesn’t mean it’s accurate.
This situation shows we might need new ways to judge these models, especially to catch when
they sound confident but are actually giving wrong information. It’s a reminder that looking
good isn’t the same as being right, highlighting the need for better evaluation methods in the
field.

The novel RAG Confusion Matrix we’ve introduced is effective at showcasing the true
positives (TP), true negatives (TN), false positives (FP), and false negatives (FN) for a dataset.
It helps us understand a model’s ability to stay relevant to the context and avoid relying too
heavily on its pre-trained knowledge or "weights." By balancing the number of matches and
non-matches, we gain clearer insights into the model’s performance.

This confusion matrix is adaptable, allowing us to focus on different metrics like Relevance,
Coherence, Fluency, or Faithfulness. However, setting a threshold for these metrics is a crucial
part of the process. For instance, lowering the Faithfulness threshold to 4 shows us that
answers deemed "good enough" by the evaluating model can still be useful for our purposes
and offer potential for optimization (see table 6.8).

56

6. Evaluation Results

Table 6.8.: Metric: Faithfulness, Threshold: 4

ChatGPT4 (en-mq-er) ChatGPT4 (de-mq-er) Llama2 7B (en-er)
Match Correct Incorrect Correct Incorrect Correct Incorrect

1 10(TP) 0(FN) 10(TP) 0(FN) 9(TP) 1(FN)

0 5(FP) 5(TN) 6(FP) 4(TN) 7(FP) 3(TN)

In Table 6.8, we observe that GPT 4 consistently scored at least a 4 across all matches,
showcasing its robust performance. Notably, this is the first instance where the German
dataset ranks within the top 3 positions, suggesting that larger models like GPT 4 are better
at adhering to facts and minimizing hallucinations compared to smaller models. This aligns
with the intuitive expectation that bigger models would perform more accurately due to their
extensive training data and advanced capabilities, not to mention the cut-off date of GPT 4 in
this iteration being April 2023.

Additionally, all three models managed to provide somewhat accurate answers even when
presented with incorrect context. This raises an important consideration about whether such
a capability is desirable. In our current framework, answering correctly in a wrong context
might indicate that the model’s pre-trained knowledge (weights) is prioritized over the given
context. This observation prompts us to question the balance between relying on the model’s
internal knowledge versus the specific context provided, especially in scenarios where the
context might lead to inaccurate or irrelevant responses.

Yet, deciding on a threshold in general also presents challenges. It creates a binary
classification of entries—those meeting or exceeding the threshold and those that do not. This
approach limits our understanding of the model’s performance on entries that fall short of
the threshold. For example, it matters whether false negatives scored a 1 or just missed the
mark with a 4, as it significantly impacts our evaluation of the model’s performance, as we
just saw.

Despite these limitations, the RAG Confusion Matrix is a valuable tool for situations where
only the highest quality answers are acceptable; the RAG Confusion Matrix also gives us by
using appropriate templates a view in the ability of the LLM to be self-critical and express the
fact that the given information is not provided in the context; mitigating hallucination. In the
next chapter, we’ll explore a different evaluative approach aimed at gaining a more nuanced
understanding of how well the model performs across all its responses, not just those that
meet a certain threshold.

6.2.2. RAG AVG-Metric Evaluation

In the chapter on RAG AVG-Metric Evaluation, we shift our focus from classifying predictions
as "Correct" or "Incorrect" based on a threshold within the RAG Confusion Matrix. Instead,
we’ll analyze average evaluations, offering a broader view of model performance. This

57

6. Evaluation Results

approach is encapsulated in Tables 6.9 and 6.10, designed for ease of analysis and maximum
clarity on the models’ overall effectiveness.

Our analysis will concentrate on the top three tables related to the metrics of Relevance
and Faithfulness, as detailed in Tables 6.2 and 6.4. The goal is to understand the overall
performance of these models without the binary constraints of thresholds. This method
provides another view of how well models perform across all given data.

Notably, "No Matches" scenarios will be de-emphasized in this chapter. Our investigation
into the raw data revealed that responses to "No Matches" varied significantly among RAG
frameworks, with some recognizing the absence of relevant context and others providing
answers closely aligned with the True Answer. Since these outcomes can greatly vary even
within the same model run, focusing on average scores for "No Matches" does not give us
enough interpretable confidence and therefore we are mainly focusing on the average values
of "Match".

58

6. Evaluation Results

Table 6.9.: Metric: Faithfulness, Average Values

In-Context-Learning
Llama 2 Llama 2

GPT 3.5 GPT 4
Mistral Orca Vicuna

7B 13B 7B Mini 7B 7B

de
Match 2.4 3.5 2.9 3.3 3.2 x x

No Match 2.1 2.4 4.0 3.8 3.4 x x

en
Match 3.2 2.4 2.5 3.3 3.5 1.9 0.5

No Match 2.3 1.4 3.5 2.7 2.2 3.0 0.5

Child-Parent-Retriever
Llama 2 Llama 2

GPT 3.5 GPT 4
Mistral Orca Vicuna

7B 13B 7B Mini 7B 7B

de
Match 2.6 3.1 3.2 2.6 2.9 x x

No Match 1.6 3.1 3.2 4.0 2.7 x x

en
Match 3.2 3.2 2.8 3.0 2.4 2.3 0.5

No Match 2.5 2.6 1.9 2.6 2.5 2.2 0.1

Ensemble Retriever
Llama 2 Llama 2

GPT 3.5 GPT 4
Mistral Orca Vicuna

7B 13B 7B Mini 7B 7B

de
Match 2.7 4.4 4.2 4.4 3.7 x x

No Match 1.5 3.3 2.9 3.2 2.9 x x

en
Match 4.7 3.9 4.3 3.4 3.7 3.9 0.5

No Match 3.5 2.6 2.1 2.3 2.5 2.7 0.2

In-Context-Learning & Ensemble Retriever
Llama 2 Llama 2

GPT 3.5 GPT 4
Mistral Orca Vicuna

7B 13B 7B Mini 7B 7B

de
Match 2.6 4.2 3.8 3.9 4.5 x x

No Match 2.0 3.6 3.1 3.0 3.9 x x

en
Match 2.1 3.4 3.1 4.3 4.4 2.1 0.5

No Match 2.8 3.0 2.7 2.7 3.3 2.8 0.1

59

6. Evaluation Results

Table 6.10.: Continuation of table 6.9; Metric: Faithfulness, Average Values

Mutli-Query & Ensemble Retriever
Llama 2 Llama 2

GPT 3.5 GPT 4
Mistral Orca Vicuna

7B 13B 7B Mini 7B 7B

de
Match 4.0 3.0 3.9 4.8 4.4 x x

No Match 1.9 2.0 2.7 3.4 3.3 x x

en
Match 4.5 3.8 3.6 5.0 4.6 4.0 1.4

No Match 2.6 2.7 1.8 3.3 3.5 2.9 0.3

Multi-Query & Child-Parent-Retriever
Llama 2 Llama 2

GPT 3.5 GPT 4
Mistral Orca Vicuna

7B 13B 7B Mini 7B 7B

de
Match 3.6 2.8 3.2 2.5 4.0 x x

No Match 2.0 3.3 2.6 3.1 3.8 x x

en
Match 3.2 2.7 3.4 3.6 2.3 3.4 0.7

No Match 2.4 2.1 1.5 2.2 2.7 3.2 0.5

Multi-Query & Child-Parent-Retriever & In-Context-Learning
Llama 2 Llama 2

GPT 3.5 GPT 4
Mistral Orca Vicuna

7B 13B 7B Mini 7B 7B

de
Match 2.9 2.7 3.6 3.3 2.6 x x

No Match 3.1 2.8 2.9 3.1 4.5 x x

en
Match 3.6 3.2 3.1 3.5 3.2 2.6 0.3

No Match 3.2 2.3 2.5 2.7 2.2 3.2 1.0

Multi-Query & In-Context-Learning & Ensemble Retriever
Llama 2 Llama 2

GPT 3.5 GPT 4
Mistral Orca Vicuna

7B 13B 7B Mini 7B 7B

de
Match 3.6 3.3 3.9 4.0 4.1 x x

No Match 3.1 2.9 2.1 3.2 4.3 x x

en
Match 3.1 4.6 4.0 3.8 4.2 3.2 2.1

No Match 2.5 2.7 1.9 2.9 2.3 2.9 0.5

In our evaluation, we’ve highlighted all average scores above 4 in bold for clearer visibility.
Before delving into the detailed tables from the RAG Confusion Matrix, let’s outline the key
findings:

• Runs using only In-Context-Learning or the Child-Parent-Retriever didn’t reach an
average score of 4 in any scenario.

• Conversely, configurations incorporating the Ensemble Retriever demonstrated superior

60

6. Evaluation Results

performance, with several runs achieving average scores above 4, across both English
and German datasets.

• Notably, one particular run achieved a perfect average score of 5.0 in the English dataset
and an impressive 4.8 in the German dataset, utilizing a combination of Multi-Query
and Ensemble Retriever. This standout performance aligns precisely with our analytical
goals.

• The Child-Parent-Retriever, whether used alone or in combination, did not perform as
well, contradicting its potential viability suggested by some research. This discrepancy
might stem from the method’s reliance on semantic similarity between questions and
"Child-Chunks," suggesting that a hypothetical answer comparison might have been
more effective.

• The most consistently high-performing combinations involve the Multi-Query and
Ensemble Retriever, with or without the addition of In-Context-Learning, indicating
these are the most effective strategies in our analysis.

Llama2 7B (en-mq-er), Mistral 7B (en-mq-er), Mistral 7B (de-icl-er)
In Table 6.2, we explore the top three runs based on the highest occurrences of scores of 5

in the metric of Relevance. Remarkably, the Llama2 7B configuration (en-mq-er) showcased
strong performance with an average generation rate of 4.5 when a match was provided, an
impressive feat for a model with only 7 billion parameters. The other configurations, Mistral
7B (en-mq-er) and Mistral 7B (de-icl-er), also demonstrated commendable performance with
average generation rates of 4.6 and 4.4, respectively. These results indicate that our top three
RAG configurations, in terms of Relevance, consistently scored between 4 and 5 on average,
signifying a high level of performance.

ChatGPT4 (en-mq-er) Llama2 7B (en-er) Mistral 7B (en-mq-er)
Table 5 shifts our focus to the top three runs based on the highest occurrence of perfect

scores in the metric of Faithfulness. Analyzing the average generation rates in this context
offers deeper insights into the effectiveness of the inference processes. Notably, the ChatGPT4
configuration (en-mq-er) stands out with 10 True Positives (TPs) and achieves the highest
average generation rate of 5.0, marking it as the best performer in our study, especially when
considering its impressive Hit Rate of 75.31%. This suggests that, at least within our limited
sample, this configuration most accurately adheres to the given facts.

The other two configurations, Llama2 7B (en-er) and Mistral 7B (en-mq-er), posted average
scores of 4.7 and 4.6, respectively. These scores offer insights into how well the True Negatives
(TNs) were handled in these runs.

6.3. RAG Framework Enhancement

In this chapter, we transition from exploring different RAG Evaluation methods to focusing
on enhancing the performance of the top three RAG frameworks, specifically those with the
highest Hit Rates. We will revisit their performance numbers with the goal of improving the

61

6. Evaluation Results

Hit Rate through innovative approaches to retrieving study program and topic information.
This effort involves a comparative analysis of their respective Hit Rates and Generation
Quality across various metrics. Additionally, we’ll incorporate widely recognized metrics
such as Rouge and Human Evaluation to deepen our understanding of the frameworks’
effectiveness. By combining these evaluation tools, we aim to gain a comprehensive view of
how well each RAG framework performs in an optimized setting.

Table 6.11.: Hit Rate over all possible RAG frameworks

Model #P mq-icl-er mq-icl-er-optimized

Llama 2 13B en 55.56 74.07
GPT 4 en 72.84 81.48

Mistral 7B en 56.79 67.90

Hit Rate Focusing intensively on three specific runs allowed us to target optimizations for
achieving the best possible outcomes for those scenarios. Our optimization efforts spanned
various aspects of the filtering steps, where we discovered that the template used previously
might have been more of a hindrance than a help. Originally, the template presented the LLM
with numerous options for different study programs and topics, potentially overwhelming it
with choices. Instead, we leveraged the LLM’s inherent "smarts" to deduce the appropriate
study program directly from the question posed, simplifying the process.

Theoretically, incorporating additional modules into the filtering step could further enhance
the Hit Rate. For the time being, our focus remains on analyzing these three runs across
different metrics. This targeted approach not only simplifies the optimization process but
also allows for a more manageable evaluation of changes and their impacts on performance.

62

6. Evaluation Results

Model Name Match Rouge-1 Rouge-2 Rouge-L BERT-score
Llama 13B 1 0.321 0.152 0.281 0.881
Llama 13B 0 0.285 0.102 0.215 0.858
Llama 13B (optimized) 1 0.406 0.213 0.332 0.883
Llama 13B (optimized) 0 0.346 0.203 0.308 0.873
GPT 4 1 0.611 0.451 0.568 0.930
GPT 4 0 0.418 0.251 0.364 0.880
GPT 4 (optimized) 1 0.548 0.407 0.511 0.910
GPT 4 (optimized) 0 0.521 0.349 0.450 0.904
Mistral 7B 1 0.402 0.230 0.335 0.887
Mistral 7B 0 0.334 0.197 0.256 0.865
Mistral 7B (optimized) 1 0.367 0.215 0.303 0.893
Mistral 7B (optimized) 0 0.283 0.121 0.222 0.863

Table 6.12.: Average Rouge-1, Rouge-2, Rouge-L, and BERT-score by Model and Match

Rouge and BERT-Score In the context of data where Match = 1, the GPT 4 model leads in
performance with the highest Rouge scores (Rouge-1: 0.611, Rouge-2: 0.450, Rouge-L: 0.568)
and the highest BERT-score (0.930). This model’s scores reflect its strong ability to generate
responses that closely align with the reference texts, both in detail and semantic relevance,
indicating its proficiency in producing contextually accurate and engaging content.

The Mistral 7B model, while not leading, shows a balanced performance with Rouge-1 at
0.402, Rouge-2 at 0.230, Rouge-L at 0.335, and a BERT-score of 0.887. These scores suggest
that Mistral 7B is capable of generating relevant and coherent responses, albeit with a slight
compromise in the precision and depth captured by the GPT 4 model.

The Llama 13B model, with the lowest performance among the discussed models for
Match = 1 (Rouge-1: 0.321, Rouge-2: 0.152, Rouge-L: 0.281, and BERT-score: 0.881), indicates
challenges in matching the detail and semantic richness of higher-scoring models. This
suggests a need for improvement in how it mirrors the nuances and semantic content of the
reference texts.

Considering these observations, the GPT 4’s superior metrics suggest a strong alignment
with human-like text generation capabilities, making it highly effective for tasks requiring
detailed and semantically rich responses. The Mistral 7B’s scores, while not at the top,
indicate its adequacy in generating coherent responses, positioning it as a competent, though
not outstanding, model within the retrieval-augmented generation framework. This perfor-
mance gradient highlights the importance of both detail-oriented precision and semantic
understanding in generating high-quality, relevant text responses.

63

6. Evaluation Results

6.3.1. RAG Confusion Matrix

Table 6.13.: Metric: Faithfulness, Threshold: 5, Module Iteration: mq-icl-er

Original Optimized Human Evaluation
Llama2 13B Llama2 13B Llama2 13B

Correct Incorrect Correct Incorrect Correct Incorrect
1 3(TP) 7(FN) 4(TP) 6(FN) 1(TP) 9(FN)

0 1(FP) 9(TN) 2(FP) 8(TN) 0(FP) 10(TN)

Analyzing the RAG Confusion Matrix reveals significant advancements not only in the
Hit Rate of the best-performing RAG frameworks but also in the overall Generation Quality
across all runs. Delving into specifics, the Llama 2 7B model from table 6.13, which ini-
tially showed modest performance, saw an improvement with an increase of 3 additional
occurrences, totaling 4 perfect occurrences in the GPT 4 judged Faithfulness Score. However,
Human Evaluation of this particular RAG framework indicates a disparity between the high
Faithfulness judged by GPT 4 and the evaluators’ perception of performance, suggesting the
model’s answers, despite being contextually faithful, did not meet human expectations.

Upon consulting with the four Human Evaluators, it was clarified that their assessment of
Faithfulness primarily focused on the accuracy of information in relation to the True Answer
provided. While the evaluators emphasized a direct comparison between the True Answer
and the Predicted Answer, there’s a possibility that the RAG framework, during its Generation
Phase, accessed different contextual information unseen by the evaluators. This discrepancy
could explain why the outputs did not align with human evaluations, underscoring the
complexity of evaluating model-generated content and the importance of considering various
perspectives in assessing model performance.

This finding gains further support when examining the Human Relevance Score, which,
with a threshold of 5, resulted in only 1 True Positive (TP). However, adjusting the threshold
to 3—interpreted by humans as producing somewhat sufficient answers—yields 5 TPs for
Faithfulness and 8 TPs for Relevance. This variance underscores a divergence in expectations
between the GPT 4 evaluator and Human Evaluators regarding how questions should be
answered, highlighting the nuanced challenges in aligning machine and human judgments of
answer quality.

64

6. Evaluation Results

Table 6.14.: Metric: Faithfulness, Threshold: 5, Module Iteration: mq-icl-er

Original Optimized Human Evaluation
Mistral 7B Mistral 7B Mistral 7B

Correct Incorrect Correct Incorrect Correct Incorrect
1 9(TP) 1(FN) 7(TP) 3(FN) 2(TP) 8(FN)

0 1(FP) 9(TN) 5(FP) 5(TN) 0(FP) 10(TN)

Examining the Mistral 7B model from table 6.14 reveals intriguing outcomes. The evaluation
by GPT 4 worsened by 2 points, yet the model managed to retrieve 13.11% more study
programs from the overall questions posed. This indicates a potential trade-off where
incorporating additional data into the data pool, and thereby expanding the context available
to the RAG framework, might introduce more noise, negatively impacting Generation Quality.

However, Human Evaluation presents a contrasting viewpoint, hinting at a mismatch in
expectations. Lowering the threshold to 3 unveils a different scenario; with the Human
Faithfulness Metric, we observe 8 True Positives (TP) and 8 False Positives (FP), suggesting
that Mistral has a considerable capacity to meet moderate human expectations, even when the
context is inaccurately provided. Similarly, adjusting the Human Evaluators’ Relevance Score
to a threshold of 3 results in the RAG framework achieving 6 TPs. This disparity underlines
the difference in evaluation standards between GPT 4 and human evaluators and suggests
that Mistral can satisfactorily navigate medium-level expectations in terms of faithfulness and
relevance, despite potential contextual inaccuracies.

Table 6.15.: Metric: Faithfulness, Threshold: 5, Module Iteration: mq-icl-er

Original Optimized Human Evaluation
GPT 4 GPT 4 GPT 4

Correct Incorrect Correct Incorrect Correct Incorrect
1 6(TP) 4(FN) 8(TP) 2(FN) 7(TP) 3(FN)

0 3(FP) 7(TN) 5(FP) 5(TN) 4(FP) 6(TN)

Examining the performance of the final model, GPT 4, across its original RAG framework,
an optimized version, and through Human Evaluation concerning the Metric Faithfulness
with a threshold of 5, we observe consistent performance across all generations. Additionally,
GPT 4 manages to increase its Hit Rate to 81.48%, marking an improvement of 8.64%. This
significant improvement positions GPT 4 at the forefront within the English dataset. Adjusting
the threshold down to 3 for Human Evaluation, we see an enhancement in results: the Human

65

6. Evaluation Results

Faithfulness Score reaches 9 True Positives (TP), and for the Relevance Score, we achieve 8
TPs, nearing perfect generation quality.

For completeness, it’s worth noting that both Fluency and Coherence metrics, when
evaluated by Human Evaluators at a threshold of 3 for all three RAG frameworks mentioned,
almost consistently scored full points. This uniform high performance led to their exclusion
from this chapter’s detailed discussion, as there were no distinct insights to be drawn from
these metrics beyond their universally high scores.

6.3.2. RAG AVG-Metric Evaluation

Table 6.16.: Average Values; Module Iteration: mq-icl-er

Relevance
Original Optimized

Original Optimized
Original Optimized

Llama 2 Llama 2
GPT 4 GPT 4

Mistral Mistral
13B 13B 7B 7B

en
Match 3.5 3.3/3.0 3.4 4.4/4.1 4.6 3.9/2.9

No Match 2.7 2.7/2.3 2.6 3.3/3.7 2.5 3.4/2.1

Fluency
Original Optimized

Original Optimized
Original Optimized

Llama 2 Llama 2
GPT 4 GPT 4

Mistral Mistral
13B 13B 7B 7B

en
Match 4.2 4.5/4.8 4.5 4.9/4.8 4.9 4.9/4.9

No Match 4.4 4.4/4.6 4.1 4.8/5.0 4.4 4.7/4.7

Coherence
Original Optimized

Original Optimized
Original Optimized

Llama 2 Llama 2
GPT 4 GPT 4

Mistral Mistral
13B 13B 7B 7B

en
Match 3.8 4.5/3.9 3.4 4.4/3.8 4.5 4.6/4.0

No Match 2.5 2.6/3.4 2.4 3.2/4.4 2.9 3.2/3.0

Faithfulness
Original Optimized

Original Optimized
Original Optimized

Llama 2 Llama 2
GPT 4 GPT 4

Mistral Mistral
13B 13B 7B 7B

en
Match 3.2 3.2/2.7 3.4 4.4/4.3 4.5 4.2/3.4

No Match 2.0 2.1/2.2 2.9 3.5/3.3 2.5 3.3/2.6

Examining table 6.16 offers us another perspective on our dataset. Before diving into the
details, let’s clarify how to interpret this table. The scores range from 1 to 5 for both the

66

6. Evaluation Results

original RAG framework and the optimized version. In the optimized RAG framework, scores
are presented with a backslash separating two numbers: the first represents the score given
by GPT 4, and the second denotes the average score from Human Evaluators.

From the matrix, it’s immediately noticeable that all model runs score at least a 4.0 in
fluency, as highlighted by the bold numbers. For coherence, scores hover around the 4.0 mark
across the board, with the exception of the original GPT 4 run. This outlier could likely be
attributed to the limited sample size used in our analysis. With this overview, we return our
focus to the crucial metrics of Relevance and Faithfulness, aiming to understand how both
the original and optimized RAG frameworks perform in these key areas.

The numbers provided give a clear indication of performance across different RAG frame-
works. Llama 7B, despite achieving one of the highest Hit Rates, averaged around 3.2 in
both Relevance and Faithfulness during the generation task, showing room for improvement.
Mistral, in contrast, performed worse in the optimized version compared to its original setup
according to GPT 4’s evaluation, experiencing a slight increase in Hit Rate but a decrease of
about 0.5 points in both metrics. This suggests a potential trade-off between achieving more
information hits and a decline in generation quality, warranting further investigation that
goes beyond the scope of this thesis. Due to the limited data sample, definitive conclusions
are challenging to draw.

GPT 4, however, maintained similar performance levels in both metrics and was close to
achieving the perfect score, with only a few outliers. This consistency is noteworthy, especially
when considering the divergence in evaluations between human evaluators and GPT 4 for the
optimized RAG frameworks. Llama 2 and Mistral didn’t align with human preferences as
well as GPT 4 did. This could indicate that GPT 4, having processed vast amounts of data,
can present information in a manner more appealing to humans. Alternatively, it suggests
that among all models evaluated, GPT 4 was best at discerning relevant from irrelevant
information, enabling it to generate answers that closely matched the True Answer and were
favorably viewed by human evaluators. This final interpretation also goes along with the
findings that the performance of Llama 2 and Mistral dropped compared to the original RAG
framework.

67

7. Conclusion and Future Work

In this concluding chapter, we summarize our findings and address the research questions
posed at the outset of this thesis. Our investigation was guided by four key questions,
each examining different aspects of the RAG framework, including the effectiveness of the
Multi-Query in the retrieval phase and the roles of the Child-Parent-Retriever and Ensemble
Retriever in the generation phase. Additionally, we explored the overarching question of how
the use of different LLMs impacts the overall performance of the RAG framework.

Firstly, evidence from Table 6.11 demonstrates a significant improvement in Hit Rate with
the incorporation of Multi-Query techniques, with some instances showing a doubling of
rates. This underscores the Multi-Query’s effectiveness in enhancing the retrieval process.

Secondly, the Child-Parent-Retriever did not produce the anticipated benefits. A plausible
explanation is the insufficient semantic similarity between the question vectorization and
the short Child-Chunks, which failed to be effectively selected during retrieval. Conversely,
the Ensemble Retriever showed remarkable effectiveness, particularly when paired with the
Multi-Query, achieving perfect scores in table 6.10 using the GPT 4 model.

Regarding the use of different LLMs, the results warrant a nuanced discussion. GPT 4,
particularly when utilizing a combination of Multi-Query and Ensemble Retriever, along
with In-Context-Learning, achieved the highest Retrieval (Hit Rate: 81.48%) and Generation
Quality (AVG: 5.0 at Match). However, there are notable competitors. An optimized blend
involving Llama 2 13B for the Retrieval Phase, leveraging Multi-Query, In-Context-Learning,
and Ensemble Retriever, yielded an impressive 74.07% Hit Rate. For the Generation Phase,
the Original Mistral 7B with the same module iteration is recommended.

For future work in the realm of Retrieval Augmented Generation (RAG) frameworks, there
are several avenues ripe for exploration. Initially, our investigation highlighted the impact of
model size on generation capabilities, revealing that larger models tend to exhibit enhanced
performance. This observation suggests the potential value of incorporating an even wider
array of models, particularly those with more substantial parameter sizes, to further delineate
the relationship between model size and generation effectiveness.

Another area for advancement involves the customization of prompt templates based on
whether there is a match between the query and the context provided. Our metrics—Accuracy,
Fluency, Coherence, and Faithfulness—focus on evaluating the connection between the
Question, True Answer, and Predicted Answer. By creating separate prompt templates
for scenarios with and without matches, we could gain deeper insights into each model’s
generation quality and its ability to identify when relevant information is not present in the
provided context. This distinction would allow for a more nuanced examination of how
models handle hallucination and inaccuracies.

Moreover, the study revealed that GPT 4, despite its superior performance in terms of

68

7. Conclusion and Future Work

Faithfulness when provided with accurate context, still shows room for improvement, as
evidenced by its Hit Rate of 81.48%. This finding indicates that optimizing the query
augmentation process—perhaps by refining how student queries are integrated with specific
study program information—could further enhance retrieval accuracy and model performance.
Our initial efforts to separate study program information from user queries represent a
promising step in this direction, suggesting that more sophisticated augmentation techniques
could yield even better results.

Throughout this thesis, we’ve not only addressed key research questions but also laid a
foundation for future research in RAG frameworks. The insights gained and the methodolo-
gies developed provide a solid groundwork for further exploration and innovation in this
rapidly evolving field.

69

A. Appendix: Evaluation Metrics for
Generation Quality

Relevance

Score Criteria: Relevance is rated on a scale from 1 to 5, assessing the degree to which the
generated answer encompasses the content present in the reference answer. Only information
pertinent to the original question should be included, with extraneous details leading to
penalties.

Score Steps:

1. Read the question, generated answer, and the reference answer carefully.

2. Compare the information in the generated answer to the reference answers and check if
all points are relevant to the question.

3. Assess how well the answer covers the main query of the question, and the presence of
irrelevant or redundant information.

4. Assign a relevance score from 1 to 5.

Coherence

Score Criteria: Coherence is evaluated on a scale from 1 to 5, focusing on the overall
structural and organizational quality of the answer. The generated answer should be coherent,
well-structured, and well-organized.

Score Steps:

1. Read the reference answer carefully and identify the main topic and key points.

2. Read the generated answer and compare it to the reference answer, checking for logical
order and coverage of key points.

3. Assign a score for coherence on a scale of 1 to 5.

Fluency

Score Criteria: Fluency is assessed from 1 to 5, based on the linguistic quality of the generated
answer, including grammar, spelling, punctuation, word choice, and sentence structure.

Score Steps:

70

A. Appendix: Evaluation Metrics for Generation Quality

1. Read the generated answer and evaluate its fluency based on grammar, spelling, punc-
tuation, word choice, and sentence structure.

2. Assign a fluency score from 1 to 5.

Faithfulness

Score Criteria: Faithfulness evaluates the factual alignment between the generated and
reference answers on a scale from 1 to 5. The generated answer should not contain hallucinated
facts and must be factually consistent with the reference answer.

Score Steps:

1. Compare the generated answer to the reference answer to ensure all mentioned facts
are correct.

2. Evaluate the factual accuracy and assign a score from 1 to 5, where 1 indicates all false
information, and 5 indicates complete correctness.

71

List of Tables

5.1. Model Evaluation Summary . 45
5.2. RAG Confusion Matrix, Metric: Relevance, Threshold: 5 45

6.1. Hit Rate over all possible RAG frameworks . 48
6.2. Metric: Relevance, Threshold: 5; Top 3 TP: Correct Match & Correct Response 53
6.3. Metric: Faithfulness, Threshold: 5 . 53
6.4. Metric: Faithfulness, Threshold: 5; Top 3 TP: Correct Match & Correct Response 54
6.5. Metric: Relevance, Threshold: 5 . 55
6.6. Metric: Coherence, Threshold: 5 . 56
6.7. Metric: Fluency, Threshold: 5 . 56
6.8. Metric: Faithfulness, Threshold: 4 . 57
6.9. Metric: Faithfulness, Average Values . 59
6.10. Continuation of table 6.9; Metric: Faithfulness, Average Values 60
6.11. Hit Rate over all possible RAG frameworks . 62
6.12. Average Rouge-1, Rouge-2, Rouge-L, and BERT-score by Model and Match . . 63
6.13. Metric: Faithfulness, Threshold: 5, Module Iteration: mq-icl-er 64
6.14. Metric: Faithfulness, Threshold: 5, Module Iteration: mq-icl-er 65
6.15. Metric: Faithfulness, Threshold: 5, Module Iteration: mq-icl-er 65
6.16. Average Values; Module Iteration: mq-icl-er . 66

72

Bibliography

[1] M. Zaharia, O. Khattab, L. Chen, J. Q. Davis, H. Miller, C. Potts, J. Zou, M. Carbin,
J. Frankle, N. Rao, and A. Ghodsi. The Shift from Models to Compound AI Systems.
https://bair.berkeley.edu/blog/2024/02/18/compound-ai-systems/. 2024.

[2] I. Beltagy, M. E. Peters, and A. Cohan. Longformer: The Long-Document Transformer. 2020.
arXiv: 2004.05150 [cs.CL].

[3] B. Dhingra, J. R. Cole, J. M. Eisenschlos, D. Gillick, J. Eisenstein, and W. W. Cohen.
“Time-Aware Language Models as Temporal Knowledge Bases”. In: Transactions of the
Association for Computational Linguistics 10 (2022), pp. 257–273. issn: 2307-387X. doi:
10.1162/tacl_a_00459. url: http://dx.doi.org/10.1162/tacl_a_00459.

[4] S. Borgeaud, A. Mensch, J. Hoffmann, T. Cai, E. Rutherford, K. Millican, G. van den
Driessche, J.-B. Lespiau, B. Damoc, A. Clark, D. de Las Casas, A. Guy, J. Menick, R. Ring,
T. Hennigan, S. Huang, L. Maggiore, C. Jones, A. Cassirer, A. Brock, M. Paganini, G.
Irving, O. Vinyals, S. Osindero, K. Simonyan, J. W. Rae, E. Elsen, and L. Sifre. Improving
language models by retrieving from trillions of tokens. 2022. arXiv: 2112.04426 [cs.CL].

[5] Z. Jiang, F. F. Xu, L. Gao, Z. Sun, Q. Liu, J. Dwivedi-Yu, Y. Yang, J. Callan, and G. Neubig.
Active Retrieval Augmented Generation. 2023. arXiv: 2305.06983 [cs.CL].

[6] J. Weston and S. Sukhbaatar. System 2 Attention (is something you might need too). 2023.
arXiv: 2311.11829 [cs.CL].

[7] N. Craswell. “Mean Reciprocal Rank”. In: Encyclopedia of Database Systems. Ed. by L. Liu
and M. T. Özsu. Boston, MA: Springer US, 2009, pp. 1703–1703. isbn: 978-0-387-39940-9.
doi: 10.1007/978-0-387-39940-9_488. url: https://doi.org/10.1007/978-0-387-
39940-9_488.

[8] S. Falk and J. Plüer. Wenn Chatbots antworten. Available online at: https://www.duz.de/
beitrag/!/id/1617/wenn-chatbots-antworten. 2024.

[9] Y. Bengio, R. Ducharme, and P. Vincent. “A neural probabilistic language model”. In:
Advances in neural information processing systems 13 (2000).

[10] I. Sutskever, O. Vinyals, and Q. V. Le. Sequence to Sequence Learning with Neural Networks.
2014. arXiv: 1409.3215 [cs.CL].

[11] T. Gao, X. Yao, and D. Chen. SimCSE: Simple Contrastive Learning of Sentence Embeddings.
2022. arXiv: 2104.08821 [cs.CL].

[12] X. Ma, Y. Gong, P. He, H. Zhao, and N. Duan. Query Rewriting for Retrieval-Augmented
Large Language Models. 2023. arXiv: 2305.14283 [cs.CL].

73

https://bair.berkeley.edu/blog/2024/02/18/compound-ai-systems/
https://arxiv.org/abs/2004.05150
https://doi.org/10.1162/tacl_a_00459
http://dx.doi.org/10.1162/tacl_a_00459
https://arxiv.org/abs/2112.04426
https://arxiv.org/abs/2305.06983
https://arxiv.org/abs/2311.11829
https://doi.org/10.1007/978-0-387-39940-9_488
https://doi.org/10.1007/978-0-387-39940-9_488
https://doi.org/10.1007/978-0-387-39940-9_488
https://www.duz.de/beitrag/!/id/1617/wenn-chatbots-antworten
https://www.duz.de/beitrag/!/id/1617/wenn-chatbots-antworten
https://arxiv.org/abs/1409.3215
https://arxiv.org/abs/2104.08821
https://arxiv.org/abs/2305.14283

Bibliography

[13] O. Khattab and M. Zaharia. ColBERT: Efficient and Effective Passage Search via Contextual-
ized Late Interaction over BERT. 2020. arXiv: 2004.12832 [cs.IR].

[14] L. Gao, X. Ma, J. Lin, and J. Callan. Precise Zero-Shot Dense Retrieval without Relevance
Labels. 2022. arXiv: 2212.10496 [cs.IR].

[15] L. Wang, N. Yang, and F. Wei. Query2doc: Query Expansion with Large Language Models.
2023. arXiv: 2303.07678 [cs.IR].

[16] Z. Shao, Y. Gong, Y. Shen, M. Huang, N. Duan, and W. Chen. Enhancing Retrieval-
Augmented Large Language Models with Iterative Retrieval-Generation Synergy. 2023. arXiv:
2305.15294 [cs.CL].

[17] H. S. Zheng, S. Mishra, X. Chen, H.-T. Cheng, E. H. Chi, Q. V. Le, and D. Zhou. Take
a Step Back: Evoking Reasoning via Abstraction in Large Language Models. 2024. arXiv:
2310.06117 [cs.LG].

[18] X. Wang, Q. Yang, Y. Qiu, J. Liang, Q. He, Z. Gu, Y. Xiao, and W. Wang. KnowledGPT:
Enhancing Large Language Models with Retrieval and Storage Access on Knowledge Bases.
2023. arXiv: 2308.11761 [cs.CL].

[19] Z. Rackauckas. “Rag-Fusion: A New Take on Retrieval Augmented Generation”. In:
International Journal on Natural Language Computing 13.1 (Feb. 2024), pp. 37–47. issn:
2319-4111. doi: 10.5121/ijnlc.2024.13103. url: http://dx.doi.org/10.5121/ijnlc.
2024.13103.

[20] D. Cheng, S. Huang, J. Bi, Y. Zhan, J. Liu, Y. Wang, H. Sun, F. Wei, D. Deng, and
Q. Zhang. UPRISE: Universal Prompt Retrieval for Improving Zero-Shot Evaluation. 2023.
arXiv: 2303.08518 [cs.CL].

[21] O. Yoran, T. Wolfson, O. Ram, and J. Berant. Making Retrieval-Augmented Language
Models Robust to Irrelevant Context. 2023. arXiv: 2310.01558 [cs.CL].

[22] B. Wang, W. Ping, L. McAfee, P. Xu, B. Li, M. Shoeybi, and B. Catanzaro. InstructRetro:
Instruction Tuning post Retrieval-Augmented Pretraining. 2024. arXiv: 2310.07713 [cs.CL].

[23] W. Shi, S. Min, M. Yasunaga, M. Seo, R. James, M. Lewis, L. Zettlemoyer, and W.-t.
Yih. REPLUG: Retrieval-Augmented Black-Box Language Models. 2023. arXiv: 2301.12652
[cs.CL].

[24] Z. Feng, X. Feng, D. Zhao, M. Yang, and B. Qin. Retrieval-Generation Synergy Augmented
Large Language Models. 2023. arXiv: 2310.05149 [cs.CL].

[25] J. Liu. Building Production-Ready RAG Applications. Available online at: https://www.ai.
engineer/summit/schedule/building-production-ready-rag-applications. 2023.

[26] I. Nguyen. Evaluating RAG Part I: How to Evaluate Document Retrieval. https://www.
deepset.ai/blog/rag-evaluation-retrieval. 2023.

74

https://arxiv.org/abs/2004.12832
https://arxiv.org/abs/2212.10496
https://arxiv.org/abs/2303.07678
https://arxiv.org/abs/2305.15294
https://arxiv.org/abs/2310.06117
https://arxiv.org/abs/2308.11761
https://doi.org/10.5121/ijnlc.2024.13103
http://dx.doi.org/10.5121/ijnlc.2024.13103
http://dx.doi.org/10.5121/ijnlc.2024.13103
https://arxiv.org/abs/2303.08518
https://arxiv.org/abs/2310.01558
https://arxiv.org/abs/2310.07713
https://arxiv.org/abs/2301.12652
https://arxiv.org/abs/2301.12652
https://arxiv.org/abs/2310.05149
https://www.ai.engineer/summit/schedule/building-production-ready-rag-applications
https://www.ai.engineer/summit/schedule/building-production-ready-rag-applications
https://www.deepset.ai/blog/rag-evaluation-retrieval
https://www.deepset.ai/blog/rag-evaluation-retrieval

Bibliography

[27] H. Touvron, L. Martin, K. Stone, P. Albert, A. Almahairi, Y. Babaei, N. Bashlykov, S.
Batra, P. Bhargava, S. Bhosale, D. Bikel, L. Blecher, C. C. Ferrer, M. Chen, G. Cucurull,
D. Esiobu, J. Fernandes, J. Fu, W. Fu, B. Fuller, C. Gao, V. Goswami, N. Goyal, A.
Hartshorn, S. Hosseini, R. Hou, H. Inan, M. Kardas, V. Kerkez, M. Khabsa, I. Kloumann,
A. Korenev, P. S. Koura, M.-A. Lachaux, T. Lavril, J. Lee, D. Liskovich, Y. Lu, Y. Mao,
X. Martinet, T. Mihaylov, P. Mishra, I. Molybog, Y. Nie, A. Poulton, J. Reizenstein,
R. Rungta, K. Saladi, A. Schelten, R. Silva, E. M. Smith, R. Subramanian, X. E. Tan,
B. Tang, R. Taylor, A. Williams, J. X. Kuan, P. Xu, Z. Yan, I. Zarov, Y. Zhang, A. Fan,
M. Kambadur, S. Narang, A. Rodriguez, R. Stojnic, S. Edunov, and T. Scialom. Llama 2:
Open Foundation and Fine-Tuned Chat Models. 2023. arXiv: 2307.09288 [cs.CL].

[28] A. Q. Jiang, A. Sablayrolles, A. Mensch, C. Bamford, D. S. Chaplot, D. de las Casas,
F. Bressand, G. Lengyel, G. Lample, L. Saulnier, L. R. Lavaud, M.-A. Lachaux, P. Stock,
T. L. Scao, T. Lavril, T. Wang, T. Lacroix, and W. E. Sayed. Mistral 7B. 2023. arXiv:
2310.06825 [cs.CL].

[29] S. Robertson and H. Zaragoza. “The Probabilistic Relevance Framework: BM25 and
Beyond”. In: Foundations and Trends in Information Retrieval 3.4 (2009), pp. 333–389. doi:
10.1561/1500000019.

75

https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2310.06825
https://doi.org/10.1561/1500000019

	Abstract
	Contents
	Introduction
	Related Work
	Background
	Large Language Models
	Embedding

	Retrieval Augmented Generation
	Naive RAG
	Advanced RAG
	Modular RAG

	Evaluation
	RAG Evaluation

	Corpora
	TUM Studyprogram Corpora
	Official TUM website
	Individual Faculty website

	Question-Answer Set
	Evaluation Set

	Methodology
	Models
	Open-Sourced Models
	Closed-Sourced Models

	Pre-Retrieval Phase
	Multi Query

	Retrieval Phase
	Child Parent Retriever
	Ensemble Retriever

	Generation Phase
	In-Context-Learning
	Parsing Meta-Data

	User Interface
	Evaluation
	RAG Confusion Matrix

	Evaluation Results
	Retrieval Quality
	Hit Rate

	Generation Quality
	RAG Confusion Matrix
	RAG AVG-Metric Evaluation

	RAG Framework Enhancement
	RAG Confusion Matrix
	RAG AVG-Metric Evaluation

	Conclusion and Future Work
	Appendix: Evaluation Metrics for Generation Quality
	List of Tables
	Bibliography

